Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes nucleophilic, basicity

Mechanistic hypotheses play an important role in developing new catalytic and selective heterofunctionalizations of alkenes. Two basic reaction cycles for metal-catalyzed hydroalkoxylation (and hydration, for R = H) of alkenes can be postulated (Scheme 2). One pathway leads to Markovnikov products via activation of the nucleophile, oxy-metallation, and protonolysis (hydro-de-metallation) (Scheme 2a). Alternatively to the inner sphere syn-oxymetallation depicted in Scheme 2a, external anti-attack of the nucleophUe to coordinated olefin is plausible. The oxidation state of the metal remains constant in this cycle. The alternative hydrometallation pathway (Scheme 2b) proceeds via oxidative addition of the H-OR bond, hydrometallation of the olefin, and reductive elimination to the anti-Markovnikov addition product [3,4]. [Pg.125]

Alkylation can also be accomplished with electrophilic alkenes. There is a dichotomy between basic and acidic conditions. Under basic conditions, where the indole anion is the reactive nucleophile, A-alkylation occurs. Under acidic conditions C-alkylation is observed. The reaction of indole with 4-vinylpyri-dine is an interesting illustration. Good yields of the 3-alkylation product are obtained in refluxing acetic acid[18] whereas if the reaction is done in ethanol containing sodium ethoxide 1-alkylation occurs[19]. Table 11.2 gives some examples of 3-alkylation using electrophilic alkenes. [Pg.107]

For those substrates more susceptible to nucleophilic attack (e.g., polyhalo alkenes and alkenes of the type C=C—Z), it is better to carry out the reaction in basic solution, where the attacking species is RO . The reactions with C=C—Z are of the Michael type, and OR goes to the side away from the Z. Since triple bonds are more susceptible to nucleophilic attack than double bonds, it might be expected that bases would catalyze addition to triple bonds particularly well. This is the case, and enol ethers and acetals can be produced by this reaction. Because enol ethers are more susceptible than triple bonds to electrophilic attack, the addition of alcohols to enol ethers can also be catalyzed by acids. " One utilization of this reaction involves the compound dihydropyran... [Pg.996]

Other nitrogen compounds, among them hydroxylamine, hydrazines, and amides (15-9), also add to alkenes. Even with amines, basic catalysts are sometimes used, so that RNH or R2N is the actual nucleophile. Tertiary amines (except those that are too bulky) add to Michael-type substrates in a reaction that is catalyzed by acids like HCl or HNO3 to give the corresponding quaternary ammonium salts. " ... [Pg.1000]

Iodine is a very good electrophile for effecting intramolecular nucleophilic addition to alkenes, as exemplified by the iodolactonization reaction71 Reaction of iodine with carboxylic acids having carbon-carbon double bonds placed to permit intramolecular reaction results in formation of iodolactones. The reaction shows a preference for formation of five- over six-membered72 rings and is a stereospecific anti addition when carried out under basic conditions. [Pg.312]

From Chapter 7 it is apparent that the trichloromethyl anion is formed under basic conditions from chloroform, as a precursor of the carbene. The anion can also react with Jt-deficient alkenes (see Section 7.3) and participate in nucleophilic substitution reactions, e.g. 1,1-diacyloxy compounds are converted into 1,1,1-trichloroalkan-2-ols [58] (Scheme 6.35). Similarly, benzyl bromides are converted into (2-bromoethynyl)arenes via an initial nucleophilic displacement followed by elimination of hydrogen bromide [59] (Scheme 6.35). [Pg.299]

Sulfonium ylides R2S=CR 2 [672,673] and metallated sulfones [674-676] can cyclopropanate simple alkenes upon catalysis with copper and nickel complexes (Table 3.6). Because of the increased nucleophilicity and basicity of these ylides, compared with diazoalkanes, these reagents are prone to numerous side-reactions,... [Pg.116]

If olehn metathesis is to be conducted in solution, solvents of low Lewis-basicity will generally give the best results (CH2CI2 > toluene > THF). As discussed above, metathesis is initiated by the formation of a jt-complex between the metal and the alkene. Hence, other nucleophiles will compete with the alkene for these coordination sites and in some systems even THF can lead to complete deactivation of the catalyst [786]. Tungsten-based catalysts which can even metathesize allyl thioethers have, however, been described [787]. [Pg.143]

Besides direct nucleophilic attack onto the acceptor group, an activated diene may also undergo 1,4- or 1,6-addition in the latter case, capture of the ambident enolate with a soft electrophile can take place at two different positions. Hence, the nucleophilic addition can result in the formation of three regioisomeric alkenes, which may in addition be formed as E/Z isomers. Moreover, depending on the nature of nucleophile and electrophile, the addition products may contain one or two stereogenic centers, and, as a further complication, basic conditions may give rise to the isomerization of the initially formed 8,y-unsaturated carbonyl compounds (and other acceptor-substituted alkenes of this type) to the thermodynamically more stable conjugated isomer (Eq. 4.1). [Pg.146]

It is often preferable to use basic conditions with hydroxide or alkoxide as a better nucleophile, though this may lead to elimination and alkene formation as a competing reaction (see Section 6.4). [Pg.198]

Although some details are still debated, there is a general agreement about the basic steps of the mechanistic scheme. The first two steps are consistent with the kinetics of the reaction in that the oxidation is inhibited by Cl- and step 3 accounts for acid inhibition (Scheme 9.11). Key features of the process are the nucleophilic attack on the TT-complexed alkene, resulting in its transformation to a a-bonded intermediate (65 to 66), and p-hydride elimination (66 to 67). The disagreement is in the nature of nucleophilic attack called the hydroxypalladation step. [Pg.471]

The more basic and less hindered pyridines undergo nucleophilic attack at an ethylene coordinated to platinum(II). Pyridine substitution reactions at platinum also occur, and in the presence of excess ethylene, alkene replacement is observed.72 ... [Pg.409]


See other pages where Alkenes nucleophilic, basicity is mentioned: [Pg.206]    [Pg.300]    [Pg.300]    [Pg.62]    [Pg.308]    [Pg.64]    [Pg.153]    [Pg.238]    [Pg.10]    [Pg.72]    [Pg.27]    [Pg.11]    [Pg.276]    [Pg.7]    [Pg.568]    [Pg.58]    [Pg.120]    [Pg.659]    [Pg.21]    [Pg.64]    [Pg.38]    [Pg.21]    [Pg.362]    [Pg.344]    [Pg.408]    [Pg.244]    [Pg.147]    [Pg.345]    [Pg.396]    [Pg.31]    [Pg.70]   
See also in sourсe #XX -- [ Pg.1097 , Pg.1098 , Pg.1099 , Pg.1100 , Pg.1101 , Pg.1102 , Pg.1103 ]

See also in sourсe #XX -- [ Pg.1097 , Pg.1098 , Pg.1099 , Pg.1100 , Pg.1101 , Pg.1102 , Pg.1103 ]




SEARCH



Basicity alkenes

Nucleophiles alkenes

Nucleophiles basicity

© 2024 chempedia.info