Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes external reagents

This chapter deals mainly with the 1,3-dipolar cycloaddition reactions of three 1,3-dipoles azomethine ylides, nitrile oxides, and nitrones. These three have been relatively well investigated, and examples of external reagent-mediated stereocontrolled cycloadditions of other 1,3-dipoles are quite limited. Both nitrile oxides and nitrones are 1,3-dipoles whose cycloaddition reactions with alkene dipolarophiles produce 2-isoxazolines and isoxazolidines, their dihydro derivatives. These two heterocycles have long been used as intermediates in a variety of synthetic applications because their rich functionality. When subjected to reductive cleavage of the N—O bonds of these heterocycles, for example, important building blocks such as p-hydroxy ketones (aldols), a,p-unsaturated ketones, y-amino alcohols, and so on are produced (7-12). Stereocontrolled and/or enantiocontrolled cycloadditions of nitrones are the most widely developed (6,13). Examples of enantioselective Lewis acid catalyzed 1,3-dipolar cycloadditions are summarized by J0rgensen in Chapter 12 of this book, and will not be discussed further here. [Pg.757]

Control of reaction selectivities with external reagents has been quite difficult. Unsolved problems remaining in the held of nitrile oxide cycloadditions are (a) Nitrile oxide cycloadditions to 1,2-disubstituted alkenes are sluggish, the dipoles undergoing facile dimerization to furoxans in most cases (b) the reactions of nitrile oxides with 1,2-disubstituted alkenes nonregioselective (c) stereo- and regiocontrol of this reaction by use of external reagents are not yet well developed and (d) there are few examples of catalysis by Lewis acids known, as is true for catalyzed enantioselective reactions. [Pg.779]

While this cyclization method does not allow the incorporation of substituents into the 3-position, as is available with internal alkynes, in analogous chemistry to that in Section 6.2.2, the palladium bound intermediate of cyclization can be intercepted with a range of external reagents to functionalize this site. These include aryl or vinyl halides, allylic substrates, carbonylation, and Heck coupling with alkenes [72]. [Pg.182]

The cyclopropanation of alkenes using external stoichiometric chiral additives can be divided according to their general mechanistic scheme into two classes. The enantios-elective cyclopropanation of allylic alcohols, in which a pre-association between the corresponding zinc alkoxide and the zinc reagent probably takes place, constitutes the first class. The second class involves the enantioselective cyclopropanation of unfunctionalized alkenes. The latter implies that there will be no association between the reagent and the alkene through alkoxide formation. [Pg.273]

Any of these BH3 compounds adds readily to most alkenes at room temperature or lower temperatures. The reactions usually are carried out in ether solvents, although hydrocarbon solvents can be used with the borane-dimethyl sulfide complex. When diborane is the reagent, it can be generated either in situ or externally through the reaction of boron trifluoride with sodium borohydride ... [Pg.421]

The fruitfulness of the idea of a stepwise addition with an independent variation of the addends was brilliantly illustrated by Normant s studies, which resulted in the elaboration of a general method of alkene synthesis based on the reaction of alkyne carbometallation. Basically this reaction represents a case of the well-known nucleophilic addition to a carbon-carbon triple bond. In the Normant reaction, however, the initial addition of a nucleophile (an organome-tallic reagent) across the triple bond results in the formation of a stabilized carbanion-like intermediate equivalent to a vinyl carbanion. This intermediate can similarly be further reacted with an external electrophile. Most typically, copper-modified Mg or Li reagents, which are unable to react with acidic acetylenic hydrogens, are used in this sequence. [Pg.89]

The reactions of HTIB with alkenes (Scheme 3.73) can be rationalized by a polar addition-substitution mechanism similar to the one shown in Scheme 3.70. The first step in this mechanism involves electrophilic flnfi-addition of the reagent to the double bond and the second step is nucleophilic substitution of the iodonium fragment by tosylate anion with inversion of configuration. Such a polar mechanism also explains the skeletal rearrangements in the reactions of HTIB with polycyclic alkenes [227], the participation of external nucleophiles [228] and the intramolecular participation of a nucleophilic functional group with the formation of lactones and other cyclic products [229-231]. An analogous reactivity pattern is also typical of [hydroxy(methanesulfonyloxy)iodo]benzene [232] and other [hydroxy(organosulfonyloxy)iodo]arenes. [Pg.175]

Sol 2. Initial step of the reaction involves an intramolecular hexadehydro-Diels—Alder (HDDA) reaction to give a highly reactive benzyne intermediate. In the absence of external trapping reagents, the benzyne intermediate can simultaneously accept two vicinal hydrogen atoms from a suitable alkane 2H-donor, often the reaction solvent. This desaturates the donor alkane, forming an alkene, and traps the benzyne to a dihydrobenzenoid product... [Pg.287]


See other pages where Alkenes external reagents is mentioned: [Pg.768]    [Pg.779]    [Pg.626]    [Pg.11]    [Pg.143]    [Pg.21]    [Pg.4]    [Pg.328]    [Pg.11]    [Pg.37]    [Pg.174]    [Pg.531]    [Pg.940]    [Pg.67]    [Pg.300]    [Pg.2033]    [Pg.3242]    [Pg.8]    [Pg.1144]    [Pg.10]    [Pg.418]    [Pg.301]    [Pg.15]    [Pg.47]    [Pg.2032]    [Pg.3241]    [Pg.8]    [Pg.858]    [Pg.71]    [Pg.765]    [Pg.124]    [Pg.5]    [Pg.104]    [Pg.253]    [Pg.46]   
See also in sourсe #XX -- [ Pg.779 , Pg.780 , Pg.781 , Pg.782 , Pg.783 , Pg.784 , Pg.785 , Pg.786 , Pg.787 , Pg.788 , Pg.789 , Pg.790 , Pg.791 , Pg.792 , Pg.793 ]

See also in sourсe #XX -- [ Pg.779 , Pg.780 , Pg.781 , Pg.782 , Pg.783 , Pg.784 , Pg.785 ]




SEARCH



Alkenes reagents

External reagents

© 2024 chempedia.info