Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

1 - -1 -alkene molybdenum carbene

Since the discovery of ruthenium and molybdenum carbene complexes that efficiently catalyze olefin metathesis under mild reaction conditions and that are compatible with a broad range of functional groups, olefin metathesis has increasingly been used for the preparation of alkenes on insoluble supports. In particular, the ruthenium complexes Cl2(PCy3)2Ru=CHR, developed by Grubbs, show sufficient catalytic activity even in the presence of air and water [781] and are well suited for solid-phase synthesis. [Pg.127]

These Mo " " ions can react with alkenes to form active molybdenum carbene complexes [65,67], Catalysts that are even much more active can be obtained when the photoreduction is followed by the treatment with carbene-generating compounds such as cyclopropane [67,68] at 293 K, followed by evacuation at 623 K, These catalysts are also active for the metathesis of unsaturated esters. [Pg.529]

The possibility of being involved in olefin metathesis is one of the most important properties of Fischer carbene complexes. [2+2] Cycloaddition between the electron-rich alkene 11 and the carbene complex 12 leads to the intermediate metallacyclobutane 13, which undergoes [2+2] cycloreversion to give a new carbene complex 15 and a new alkene 14 [19]. The (methoxy)phenylcar-benetungsten complex is less reactive in this mode than the corresponding chromium and molybdenum analogs (Scheme 3). [Pg.24]

Based on a detailed investigation, it was concluded that the exceptional ability of the molybdenum compounds to promote cyclopropanation of electron-poor alkenes is not caused by intermediate nucleophilic metal carbenes, as one might assume at first glance. Rather, they seem to interfere with the reaction sequence of the uncatalyzed formation of 2-pyrazolines (Scheme 18) by preventing the 1-pyrazoline - 2-pyrazoline tautomerization from occurring. Thereby, the 1-pyrazoline has the opportunity to decompose purely thermally to cyclopropanes and formal vinylic C—H insertion products. This assumption is supported by the following facts a) Neither Mo(CO)6 nor Mo2(OAc)4 influence the rate of [3 + 2] cycloaddition of the diazocarbonyl compound to the alkene. b) Decomposition of ethyl diazoacetate is only weakly accelerated by the molybdenum compounds, c) The latter do not affect the decomposition rate of and product distribution from independently synthesized, representative 1-pyrazolines, and 2-pyrazolines are not at all decomposed in their presence at the given reaction temperature. [Pg.128]

In particular, ruthenium carbenes 1 are more sensitive to the substitution pattern of the alkenes than the molybdenum catalyst 24 [19]. While the latter reacts readily even with di- and tri-substituted double bonds and is apparently the only catalyst capable of producing tetrasubstituted cycloalkenes (cf. Table 2, en-... [Pg.56]

The ruthenium carbene catalysts 1 developed by Grubbs are distinguished by an exceptional tolerance towards polar functional groups [3]. Although generalizations are difficult and further experimental data are necessary in order to obtain a fully comprehensive picture, some trends may be deduced from the literature reports. Thus, many examples indicate that ethers, silyl ethers, acetals, esters, amides, carbamates, sulfonamides, silanes and various heterocyclic entities do not disturb. Moreover, ketones and even aldehyde functions are compatible, in contrast to reactions catalyzed by the molybdenum alkylidene complex 24 which is known to react with these groups under certain conditions [26]. Even unprotected alcohols and free carboxylic acids seem to be tolerated by 1. It should also be emphasized that the sensitivity of 1 toward the substitution pattern of alkenes outlined above usually leaves pre-existing di-, tri- and tetrasubstituted double bonds in the substrates unaffected. A nice example that illustrates many of these features is the clean dimerization of FK-506 45 to compound 46 reported by Schreiber et al. (Scheme 12) [27]. [Pg.60]

Initial reports of cross-metathesis reactions using well-defined catalysts were limited to simple isolated examples the metathesis of ethyl or methyl oleate with dec-5-ene catalysed by tungsten alkylidenes [13,14] and the cross-metathesis of unsaturated ethers catalysed by a chromium carbene complex [15]. With the discovery of the well-defined molybdenum and ruthenium alkylidene catalysts 3 and 4,by Schrock [16] and Grubbs [17],respectively, the development of alkene metathesis as a tool for organic synthesis began in earnest. [Pg.167]

When alkenes are allowed to react with certain catalysts (mostly tungsten and molybdenum complexes), they are converted to other alkenes in a reaction in which the substituents on the alkenes formally interchange. This interconversion is called metathesis 126>. For some time its mechanism was believed to involve a cyclobutane intermediate (Eq. (16)). Although this has since been proven wrong and found that the catalytic metathesis rather proceeds via metal carbene complexes and metallo-cyclobutanes as discrete intermediates, reactions of olefins forming cyclobutanes,... [Pg.137]

Elimination to yield alkenes can be induced thermally or by treatment with acids or bases (for one possible mechanism, see Figure 3.39) [138,206]. Less common thermal demetallations include the thermolysis of arylmethyloxy(phenyl)carbene complexes, which can lead to the formation of aryl-substituted acetophenones [276]. Further, (difluoroboroxy)carbene complexes of molybdenum, which can be prepared by treating molybdenum hexacarbonyl with an organolithium compound and then with boron trifluoride etherate at -60 °C, decompose at room temperature to yield acyl radicals [277]. [Pg.37]


See other pages where 1 - -1 -alkene molybdenum carbene is mentioned: [Pg.2402]    [Pg.2097]    [Pg.2163]    [Pg.2176]    [Pg.2272]    [Pg.2097]    [Pg.2097]    [Pg.2163]    [Pg.2176]    [Pg.2272]    [Pg.2371]    [Pg.2402]    [Pg.295]    [Pg.274]    [Pg.295]    [Pg.151]    [Pg.152]    [Pg.143]    [Pg.175]    [Pg.216]    [Pg.15]    [Pg.14]    [Pg.238]    [Pg.164]    [Pg.188]    [Pg.222]    [Pg.106]    [Pg.154]    [Pg.175]    [Pg.668]    [Pg.286]    [Pg.352]    [Pg.80]    [Pg.147]    [Pg.227]    [Pg.242]    [Pg.281]    [Pg.297]   
See also in sourсe #XX -- [ Pg.143 ]




SEARCH



Alkenes carbenes

Carbenes molybdenum

© 2024 chempedia.info