Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkaline earth metal amides strontium

Carbene complexes of alkaline earth metal amides and metallocenes have also been reported. Reaction of calcium, strontium, and barium bis(trimethylsilyl)amides [M(N(SiMe3)2 2(thf)2] (M = Ca, Sr, Ba) with two equivalents... [Pg.5767]

It is also possible to isolate bis(carbene) complexes involving the heavier alkaline earth metals. Thus, the reaction of two equivalents of 4 (R = Me or (Bu, R = H) with calcium, strontium and barium bis(trimethylsilyl)amides [M N(SiMe3)2 2(thf)2] (M = Ca, Sr, Ba) resulted in the displacement of two thf molecules to afford the corresponding biscarbene species, 19 (19). The solubilities and stabilities of these complexes were found to decrease from calcium to barium. [Pg.16]

The metalation of trialkylsilylphosphane and -arsane with the alkaline earth metal bis[bis(trimethylsilyl)amides] of calcium, strontium, and barium yields the mixed phosphanides and phosphanediides as well as arsanides and arsanediides depending on the stoichiometry and the demand of the trialkylsily] substituents according to Scheme 3.6-11. The main feature is the M2E3 bipyramid with the metal atoms in apical positions. These cages are often interconnected via common faces (61, 63, 64, 65, 67, and 69). A substitution of the phosphanide substituents by other Lewis bases such as THF or benzonitrile is not possible for these compounds and, consequently, homoleptic phosphanediides and arsanediides with inner M4E4 heterocubane moieties are so far unknown for M = Ca, Sr, and Ba. In all these cases a further metalation to obtain homoleptic phosphanediides failed. [Pg.416]

The synthesis of heterobimetallic cages which contain alkaline-earth metals and tin(+2) atoms succeeds by the metalation of trialkylsilyl substituted phosphanes with the bis(trimethylsilyl)amides of tin(+2) and of calcium, strontium, or barium according to Scheme 3.6-13. Heterobimetallic cages of tin and magnesium are unknown, instead their formation mixtures of the homometallic phosphanides are observed [75],... [Pg.419]

Syntheses that exploit the solubility of the alkaline-earth metals in liquid ammonia have proven practical for alkoxide work, as they generate high yields, reaction rates, and purity (Table 8, Equation (3)). In a refinement of this approach, Caulton and co-workers have used dissolved ammonia in an ethereal solvent, usually THF, to effect the production of a number of alkoxides of barium, and this method has also been examined with calcium and strontium (Table 8, Equations (4a) to (4c)). Displacement reactions using alkali metal alkoxides and alkaline-earth dihalides (Table 8, Equation (5)), and between alkaline-earth hydrides or amides and alcohols (Table 8, Equations (6) and (7)), have been examined, but alkali-metal halide impurities, incomplete reactions, and unexpected equilibria and byproducts can affect the usefulness of these approaches. [Pg.61]

A comparison of these compounds with the corresponding zinc derivatives should clarify the influence of the empty d orbitals involved in the bonding situation of the alkaline earth metal bis(phosphanides). Whereas zinc bis[bis(trimethylsilyl)amide] is monomeric due to the steric demand of the bulky amide ligand [6], the trimethylsilyl substituted phosphanide leads to oligomers such as dimers or trimers [7], The influence of the pnicogen atom is small, thus the phosphorus and arsenic derivatives (Fig. 5.) look very similar [8] or even crystallize isotypically. In contrast to the d metals calcium, strontium and barium, zinc derivatives solely build up monocyclic ring systems. [Pg.160]

Amide. — It has been pointed out before that europium behaves more or less like the alkaline earths and is closely related to strontium and barium. It is found to react with liquid ammonia at —78° C in much the same way as the alkali metals forming a characteristic deep blue solution. Eu(NH2)2 can be isolated [260] from the blue solution. Recent electron paramagnetic studies [261] of solutions of europium in liquid ammonia showed the presence of complex hyperfine lines arising from Eu2+ (8 7/2, g — 1.990 0.002) besides the characteristic single line of the solvated electron (g = 2.0014 0.0002) K The departure of the Eu2+ <7-value from the free electron value is explained as being due to spin-orbit coupling and a slight admixture (3.5%) of the 6P7/2 state. [Pg.117]

Several classes of synthesized calixarenes bearing several moieties (ether, ester, and amide derivatives), were tested for the extraction of strontium picrates (from aqueous solutions into dichloromethane).128 Only a few of them show appreciable extraction levels. The p-i-butyl calix[6]arene hexa(di-/V-ethyl)amide (CA4) shows a very high extraction level of alkaline earth cations with respect to alkali metal cations. Moreover, dealkylation of the calix[6]arene hcxa(di-/V-cthyl)amidc (CA5) decreases the extraction of both sodium and strontium. As this decrease is much more important for sodium than for strontium, the Sr/Na selectivity, which increases from 3.12 to 9.4, is better than that achieved for DC18 derivative under the same conditions (8.7). These results were confirmed by extraction of strontium (5 x 10 4 M) from 1 M HN03 solutions, where it was found that p-t-butyl calix[4]arene tetra(di-N-ethyl) amide (CA2) (10 2 M in NPOE) extracts only sodium (DNa = 12.3, DSl < 0.001). [Pg.245]


See other pages where Alkaline earth metal amides strontium is mentioned: [Pg.66]    [Pg.413]    [Pg.259]    [Pg.260]    [Pg.246]    [Pg.5327]    [Pg.5328]    [Pg.5328]    [Pg.38]    [Pg.323]    [Pg.329]    [Pg.437]    [Pg.5326]    [Pg.5327]    [Pg.5327]    [Pg.5]    [Pg.251]    [Pg.51]    [Pg.18]    [Pg.28]   


SEARCH



Alkaline earth metal amides

Alkaline earth metals

Alkaline earth metals strontium

Alkaline strontium

Earth strontium

Metal alkaline

Metalation amides

Strontium amides

Strontium metal

© 2024 chempedia.info