Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aliphatic enolization

Further confirmation of the two-fold shift, and of the double inversion of the position of the 14C label, is provided by trapping (cf. p. 50) the first dienone intermediate (55a) with maleic anhydride in a Diels-Alder reaction. An exactly analogous rearrangement is found to occur in allyl ethers of aliphatic enols, e.g (58) ... [Pg.356]

Bromination rates of aliphatic enol ethers have been included in the interactive treatment of alkenes GRIC=CR R, with G being a conjugated group most of them fit the multiparameter equation (41) satisfactorily. A more detailed analysis of reactivity-selectivity effects in the reaction of 1-ethoxyethylene [22] and its a- and / -methyl analogues [23] and [24] has been carried out,... [Pg.263]

Unprecedented e.e.-values were obtained using ligand 24b in the hydrogenation of aliphatic enol esters. A furyl substituent on the carboxylate is apparently... [Pg.1018]

Table 28.6 Enantioselective hydrogenation of aliphatic enol esters. R2... Table 28.6 Enantioselective hydrogenation of aliphatic enol esters. R2...
Nor can there be any question of real tautomerism in the case of phenol. In its chemical properties phenol resembles the aliphatic enols in all respects. We need only recall the agreement in the acid character, the production of colour with ferric chloride, and the reactions with halogens, nitrous acid, and aromatic diazo-compounds (coupling), caused by the activity of the double bond and proceeding in the same way in phenols and aliphatic enols. The enol nature of phenol provides valuable support for the conception of the constitution of benzene as expressed in the Kekule-Thiele formula, since it is an expression of the tendency of the ring to maintain the aromatic state of lowest energy. In this connexion the hypothetical keto-form of phenol (A)—not yet obtained—would be of interest in comparison with... [Pg.263]

Okada Y, Akaba R, Chiba K (2009) Electrocatalytic formal [2 -I- 2] cycloaddition reactions between anod-ically activated aliphatic enol ethers and unactivated olefins possessing an alkoxyphenyl group. Org Lett 11 1033-1035... [Pg.143]

Aliphatic enol esters and aryl esters Formation of alk-CO+ (m/z 43, 57, 71,...). Elimination of a ketene to give the enol/phenol radical cation. The rearrangement occurs prodominantly, but not exclusively, through a 4-membered transition state. [Pg.433]

Treating the dimethylaminodioxolan (631) with feebly acidic compounds ranging from t-butyl alcohol to acetic acid generates a series of simple aliphatic enols, e.g. (632) and (633), which are surprisingly stable, especially in DMSO solution. The deuterio-enols are even more stable. ... [Pg.124]

B 0 0 R D Enol ether synthesis Synthesis of chloioethers and enol ethers Irom aliphatic aldehydes. [Pg.41]

This condensation finds considerable generality, enol silyl ethers of a variety of ketones and both aromatic and aliphatic aldehydes are usable For enol silyl ethers of substituted cyclohexanones the reaction is regio- and stereospecific [id]. [Pg.944]

The acylation of enamino ketones can take place on oxygen or on carbon. While reaction at nitrogen is a possibility, the N-acylated products are themselves acylating agents, and further reaction normally takes place. The first reported acylation of enamino ketones (72) was that of 129, prepared by acylation of the enamine (113), which was shown to have undergone O acylation because on mild hydrolysis the enol ester (130) could be isolated. A similar reaction took place with other aliphatic acid chlorides (80) and with dibasic acid chlorides [e.g., with succinyl chloride to give 118 above]. [Pg.142]

Ghosh and co-workers have recently used the indanyl-derived auxiliary 69 (Table 1.9) in titanium enolate condensations with a range of aldehydes [34], Of the four possible diastereomers, only the anti 71 and syn TL were produced (the alternative anti and syn diastereomers were not detected by 1H or 13C NMR). The use of monodentate aliphatic aldehydes resulted in the formation of anti diastereomers... [Pg.20]

Use of the valine derived (4S )-3-acetyl-4-isopropyl-1,3-oxazolidine (8)92, the C2-symmetric reagents (2.5,55)-l-acetyl-2,5-bissubstituted pyrrolidine 994, or the doubly deprotonated acetyl urea /V-acetyl- V..V -bis[(.S)-l-phcnylethyl]urea (10), also does not lead to sufficient induced stereoselectivity combined with acceptable chemical yield. When the acetyl urea enolate is reacted with aliphatic and aromatic aldehydes, the diastereomeric adducts (ratios ranging from 1 1 to 3 1) may be separated by column chromatography to give ultimately both enantiomers of the 3-hydroxy acids in 99% ee110. [Pg.508]

So do anhydrides and many compounds that enolize easily (e.g., malonic ester and aliphatic nitro compounds). The mechanism is usually regarded as proceeding through the enol as in 12-4. If chlorosulfuric acid (CISO2OH) is used as a catalyst, carboxylic acids can be ot-iodinated, as well as chlorinated or brominated. N-Bromosuccinimide in a mixture of sulfuric acid-trifluoroacetic acid can mono-brominate simple carboxylic acids. ... [Pg.778]

In the first step, catalyst 64c attacks ketene 66 to form a zwitterionic enolate 71, followed by Mannich-type reaction with imine 76 (Fig. 40). A subsequent intramolecular acylation expels the catalyst under formation of the four-membered ring. Utilizing 10 mol% of 64c, N-Ts substituted (3-lactams 77 were prepared from symmetrically as well as unsymmetrically substituted ketenes 66, mainly, but not exclusively, with nonenolizable imines 76 as reaction partners [96]. Diastereos-electivities ranged from 8 1 to 15 1, yields from 76 to 97%, and enantioselectivities from 81 to 94% ee in the case of aliphatic ketenes 66 or 89 to 98% ee for ketenes bearing an aromatic substituent. Applying complexes 65 or the more bulky and less electron-rich 64b, ee values below 5% were obtained. [Pg.166]

After succeeding in the asymmetric reductive acylation of ketones, we ventured to see if enol acetates can be used as acyl donors and precursors of ketones at the same time through deacylation and keto-enol tautomerization (Scheme 8). The overall reaction thus corresponds to the asymmetric reduction of enol acetate. For example, 1-phenylvinyl acetate was transformed to (f )-l-phenylethyl acetate by CALB and diruthenium complex 1 in the presence of 2,6-dimethyl-4-heptanol with 89% yield and 98% ee. Molecular hydrogen (1 atm) was almost equally effective for the transformation. A broad range of enol acetates were prepared from ketones and were successfully transformed into their corresponding (7 )-acetates under 1 atm H2 (Table 19). From unsymmetrical aliphatic ketones, enol acetates were obtained as the mixtures of regio- and geometrical isomers. Notably, however, the efficiency of the process was little affected by the isomeric composition of the enol acetates. [Pg.75]

In 1991, Kobayashi el al. prepared novel chiral S/N ligands for the tin-mediated aldol reaction of silyl enol ethers with aldehydes. As an example, the reaction of benzaldehyde afforded the expected syn aldol product as the major product with a good yield and an enantioselectivity of up to 92% ee (Scheme 10.26). Moreover, other aldehydes such as substituted benzaldehydes or aliphatic unsaturated aldehydes were converted into their corresponding aldol products with enantioselectivities of more than 90% ee. It was checked that the corresponding diamine ligands provided less active complexes for the same reactions. [Pg.314]

As noted in Chapter 1, this is one of the best methods for generating a specific enolate of a ketone. The enolate generated by conjugate reduction can undergo the characteristic alkylation and addition reactions that are discussed in Chapters 1 and 2. When this is the objective of the reduction, it is important to use only one equivalent of the proton donor. Ammonia, being a weaker acid than an aliphatic ketone, does... [Pg.435]


See other pages where Aliphatic enolization is mentioned: [Pg.368]    [Pg.223]    [Pg.17]    [Pg.358]    [Pg.312]    [Pg.368]    [Pg.223]    [Pg.17]    [Pg.358]    [Pg.312]    [Pg.268]    [Pg.36]    [Pg.184]    [Pg.948]    [Pg.318]    [Pg.336]    [Pg.61]    [Pg.69]    [Pg.322]    [Pg.15]    [Pg.17]    [Pg.958]    [Pg.287]    [Pg.296]    [Pg.201]    [Pg.93]    [Pg.123]    [Pg.125]   
See also in sourсe #XX -- [ Pg.169 ]




SEARCH



© 2024 chempedia.info