Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldose-ketose phosphate isomerase mechanism

A single base mechanism, with glutamate as the base, is common to most aldose-ketose phosphate isomerases, but the electrophilic machinery to stabilise the enolate appears to differ from enzyme to enzyme. TIM uses His95 in its... [Pg.485]

The conversion of glucose-6-phosphate to fructose-6-phosphate is analogous to the conversion of glyceraldehyde-3-phosphate to dihydroxyacetone phosphate. Both of these isomerization reactions interconvert an aldose and a ketose. Key features of the those phosphate isomerase mechanism include the hydrogen transfer between carbon 2 and carbon f (intramolecular oxidation/reduction), and the enediol intermediate (Figure... [Pg.286]

In addition to serving as structural motifs, enols and enolates are involved in diverse biological processes. Several enol/enolate intermediates have been proposed to be involved in glycolysis (Section IV.A), wherein c/ -enediol 21 is proposed to be an intermediate in the catalytic mechanism of phosphohexose isomerase and an enol-containing enamine intermediate (22) has been proposed in the catalytic pathway of class I aldolase. In the case of glucose-fructose (aldose-ketose) isomerization, removal of the proton on Cl-OH produces the aldose while deprotonation of C2-OH yields the ketose, which is accompanied by protonation at the C2 and Cl positions, respectively. There are several cofactors that are involved in various biological reactions, such as NAD(H)/NADP(H) in redox reaction and coenzyme A in group transfer reactions. Pyridoxal phosphate (PLP, 23) is a widely distributed enzyme cofactor involved in the formation of a-keto acids, L/D-amino... [Pg.587]

Much is known about the catalytic mechanism of triose phosphate isomerase. TIM catalyzes the transfer of a hydrogen atom from carbon 1 to carbon 2 in converting dihydroxyacetone phosphate into glyceraldehyde 3-phosphate, an intramolecular oxidation-reduction. This isomerization of a ketose into an aldose proceeds through an enediol intermediate (Figure 16.6). [Pg.649]

An enzymic counterpart of these complex base-catalysed rearrangements of sugars may be the reaction catalysed by 4-phospho-3,4-dihydroxy-2-butanone synthetase. The enzyme catalyses the formation of the eponymous intermediate in secondary metabolism from ribulose 5-phosphate. Labelling studies indicated that C1-C3 of the substrate became C1-C3 of the product, that H3 of the substrate derived from solvent and that C4 was lost as formate. X-ray crystal structures of the native enzyme and a partly active mutant in complex with the substrate are available. The active site of the enzyme from Met ha-nococcus jannaschii contains two metals, which can be any divalent cations of the approximate radius of Mg " or Mn ", the two usually observed. Their disposition is very reminiscent of those in the hydride transfer aldose-ketose isomerases, but also to ribulose-5-phosphate carboxylase, which works by an enolisation mechanism, so the enolisation route suggested by Steinbacher et al. is repeated in Figure 6.14, as is the Bilik-type alkyl group shift, for which an equivalent reverse aldol-aldol mechanism cannot be written. [Pg.497]

A recurring intermediate. Phosphopentose isomerase interconverts the aldose ribose 5-phosphate and the ketose ribulose 5-phosphate. Propose a mechanism. [Pg.860]


See other pages where Aldose-ketose phosphate isomerase mechanism is mentioned: [Pg.484]    [Pg.484]    [Pg.623]    [Pg.478]    [Pg.1125]    [Pg.427]    [Pg.427]   


SEARCH



Aldose

Aldose-ketose isomerases

Ketose

Ketoses aldoses

© 2024 chempedia.info