Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldol reaction diastereoselection

Scheme 35 Enolboration/hydroformylation/aldol reaction - Diastereoselective access to cyclic aldols... Scheme 35 Enolboration/hydroformylation/aldol reaction - Diastereoselective access to cyclic aldols...
Here we will illustrate the method using a single example. The aldol reaction between an enol boronate and an aldehyde can lead to four possible stereoisomers (Figure 11.32). Many of these reactions proceed with a high degree of diastereoselectivity (i.e. syn anti) and/or enantioselectivity (syn-l syn-Tl and anti-l anti-lT). Bernardi, Capelli, Gennari,... [Pg.626]

Li+, Mg 2+. AP+= enolates give comparable levels of diastereoselection for kinetic aldol reactions. [Pg.82]

The enantiomers are obtained as a racemic mixture if no asymmetric induction becomes effective. The ratio of diastereomers depends on structural features of the reactants as well as the reaction conditions as outlined in the following. By using properly substituted preformed enolates, the diastereoselectivity of the aldol reaction can be controlled. Such enolates can show E-ot Z-configuration at the carbon-carbon double bond. With Z-enolates 9, the syn products are formed preferentially, while fi-enolates 12 lead mainly to anti products. This stereochemical outcome can be rationalized to arise from the more favored transition state 10 and 13 respectively ... [Pg.7]

The stereochemical outcome of the Michael addition reaction with substituted starting materials depends on the geometry of the a ,/3-unsaturated carbonyl compound as well as the enolate geometry a stereoselective synthesis is possible. " Diastereoselectivity can be achieved if both reactants contain a stereogenic center. The relations are similar to the aldol reaction, and for... [Pg.202]

It is noteworthy that reaction diastereoselectivity closely parallels the isomeric purity of the allyiboronates, thus underscoring the requirement that the method of reagent synthesis be highly stereoselective. The data presented in Table 1 also provide strong evidence for the involvement of chair-like, cyclic transition states, analogous to the transition states previously invoked for aldol reactions46. [Pg.278]

Conducting the aldol reaction at temperatures below —78 "C increases the diastereoselectivity, but at the cost of reduced yields45. Transmetalation of the lithium enolate 2 a by treatment with diethylaluminum chloride generated an enolate species that provided high yields of aldol products, however, the diastereoselectivity was as low as that of the lithium species45. Pre treatment of the lithium enolate 2a with tin(II) chloride, zinc(II) chloride, or boron trifluoridc suppressed the aldol reaction and the starting iron-acyl complex was recovered. [Pg.542]

The a-alkoxy iron-acyl complex 5 may be deprotonated to generate the lithium enolate 6, which undergoes a highly diastereoselective aldol reaction with acetone to generate the adduct 7 as the major product. Deprotonation of acetone by 6 is believed to be a competing reaction 30% of the starting complex 5 is found in the product mixture48 40. [Pg.542]

The diastereoselectivity of this reaction contrasts dramatically with the generally low selectiv-ities observed for aldol reactions of lithium enolates of iron acyls. It has been suggested thal this enolate exists as a chelated species48 the major diastereomer produced is consistent with the transition state E which embodies the usual antiperiplanar enolate geometry. [Pg.543]

The boron enolates derived from (5)-4-silylated 2,2-dimethyl-l,3-dioxan-5-one undergo anti diastereoselective aldol reactions which provide access to protected oxopolyols of high stereochemical integrity <96SYN1095>. [Pg.306]

Summary of the Relationship between Diastereoselectivity and the Transition Structure. In this section we considered simple diastereoselection in aldol reactions of ketone enolates. Numerous observations on the reactions of enolates of ketones and related compounds are consistent with the general concept of a chairlike TS.35 These reactions show a consistent E - anti Z - syn relationship. Noncyclic TSs have more variable diastereoselectivity. The prediction or interpretation of the specific ratio of syn and anti product from any given reaction requires assessment of several variables (1) What is the stereochemical composition of the enolate (2) Does the Lewis acid promote tight coordination with both the carbonyl and enolate oxygen atoms and thereby favor a cyclic TS (3) Does the TS have a chairlike conformation (4) Are there additional Lewis base coordination sites in either reactant that can lead to reaction through a chelated TS Another factor comes into play if either the aldehyde or the enolate, or both, are chiral. In that case, facial selectivity becomes an issue and this is considered in Section 2.1.5. [Pg.78]

Scheme 2.6 shows some examples of the use of chiral auxiliaries in the aldol and Mukaiyama reactions. The reaction in Entry 1 involves an achiral aldehyde and the chiral auxiliary is the only influence on the reaction diastereoselectivity, which is very high. The Z-boron enolate results in syn diastereoselectivity. Entry 2 has both an a-methyl and a (3-benzyloxy substituent in the aldehyde reactant. The 2,3-syn relationship arises from the Z-configuration of the enolate, and the 3,4-anti stereochemistry is determined by the stereocenters in the aldehyde. The product was isolated as an ester after methanolysis. Entry 3, which is very similar to Entry 2, was done on a 60-kg scale in a process development investigation for the potential antitumor agent (+)-discodermolide (see page 1244). [Pg.119]

The reaction of an a-halo carbonyl compound with zinc, tin, or indium together with an aldehyde in water gave a direct cross-aldol reaction product (Eq. 8.90).226,227 A direct Reformatsky-type reaction occurred when an aromatic aldehyde reacted with an a-bromo ester in water mediated by zinc in low yields. Recently, it was found that such a reaction mediated by indium was successful and was promoted by son-ication (Eq. 8.91).228 The combination of BiCl3-Al,229 CdCl2-Sm,230 and Zn-Et3B-Eb0231 is also an effective mediator. Bismuth metal, upon activation by zinc fluoride, effected the crossed aldol reaction between a-bromo carbonyl compounds and aldehydes in aqueous media. The reaction was found to be regiospecific and syn-diastereoselective (Eq. 8.92).232... [Pg.265]

Base-catalyzed aldol reactions have been carried out intramole-cularly.241 The aqueous acid-catalyzed intramolecular aldol condensation of 3-oxocyclohexaneacetaldehyde proceeded diastereoselectively (Eq. 8.95).242... [Pg.267]

Diastereoselective catalytic nitro-aldol reactions of optically active iV-phthaloyl-L-phenyl-alanal with nitromethane in the presence of LLB proceed with high diastereoselectivity (anti syn = 99 1) as shown in Eq. 3.76.125 The product is converted via the Nef reaction into (2S,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid, which is a subunit of the HIV-protease inhibitor... [Pg.58]

Another application of diastereoselective nitro-aldol reactions catalyzed by Bu4NF-3H20 is demonstrated in a simple synthesis of l,4-dideoxy-l,4-imino-D-mannitol (DIM) and amino analogues (Eq. 3.85).134 The nitro-aldol reaction of nitro compounds bearing a-oxy or a-amino function with glyceraldehyde leads to nitrohexitols, which can be reduced to the corresponding amino compounds. Cyclization gives iminopolyols, as shown in Eq. 3.85. [Pg.65]

Sn(OTf)2 can function as a catalyst for aldol reactions, allylations, and cyanations asymmetric versions of these reactions have also been reported. Diastereoselective and enantioselective aldol reactions of aldehydes with silyl enol ethers using Sn(OTf)2 and a chiral amine have been reported (Scheme SO) 338 33 5 A proposed active complex is shown in the scheme. Catalytic asymmetric aldol reactions using Sn(OTf)2, a chiral diamine, and tin(II) oxide have been developed.340 Tin(II) oxide is assumed to prevent achiral reaction pathway by weakening the Lewis acidity of Me3SiOTf, which is formed during the reaction. [Pg.434]

It is well known that acrylates undergo transition metal catalyzed reductive aldol reaction, the silanes R3SiH first reacting in a 1,4 manner and the enolsilanes then participating in the actual aldol addition.57,58 A catalytic diastereoselective version was discovered by arrayed catalyst evaluation in which 192 independent catalytic systems were screened on 96-well microtiter plates.59 Conventional GC was used as the assay. A Rh-DuPhos catalyst turned out to be highly diastereoselective, but enantioselectivity was poor.59... [Pg.518]

As practiced in the preceding syntheses by Evans and Nishiyama and Yamamura, the A-ring fragment 43 is formed through substrate-directed vinylogous aldol reaction of the Brassard-type diene 19 and the chiral aldehyde 42, which is prepared using Brown s protocols for enantioselective allylation [53], followed by hydroxy-directed nnn-diastereoselective reduction of the C3 ketone (Me4NB(OAc)3H) [41],... [Pg.114]


See other pages where Aldol reaction diastereoselection is mentioned: [Pg.244]    [Pg.86]    [Pg.65]    [Pg.620]    [Pg.453]    [Pg.46]    [Pg.137]    [Pg.67]    [Pg.118]    [Pg.144]    [Pg.291]    [Pg.34]    [Pg.56]    [Pg.60]    [Pg.63]    [Pg.104]    [Pg.169]    [Pg.338]   
See also in sourсe #XX -- [ Pg.144 , Pg.148 , Pg.149 ]




SEARCH



Aldol diastereoselective

Aldol reaction diastereoselective synthesis

Aldol reactions diastereoselective

Aldol reactions diastereoselective

Aldol reactions induced diastereoselectivity

Aldol reactions simple diastereoselectivity

Aldol-Tishchenko reaction diastereoselective reactions

Aldol-type reactions diastereoselective

Butyrolactones aldol reaction, diastereoselection

Chiral lithium enolates aldol reaction diastereoselectivity

Diastereoselection directed aldol reaction

Diastereoselective Aldol Reactions via Zirconium Enolates

Diastereoselective aldol reaction of pyruvate

Diastereoselective reaction

Diastereoselective reactions Diastereoselectivity

Diastereoselective synthesis aldol reactions, chiral enolates

Diastereoselectivity aldols

Diastereoselectivity in aldol reactions

Diastereoselectivity in the aldol reaction

Diastereoselectivity reaction

Diastereoselectivity, aldol reaction

Diastereoselectivity, aldol reaction

Directed aldol reaction simple diastereoselection

Double diastereoselection aldol reaction

Kinetically Controlled Aldol Diastereoselection Achiral Reaction Partners

Metal enolates, diastereoselective aldol reaction

Mukaiyama aldol reaction diastereoselective synthesis

Mukaiyama aldol reaction diastereoselectivity

Mukaiyama aldol reactions diastereoselectivities

Natural products Mukaiyama aldol reaction, diastereoselective

© 2024 chempedia.info