Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehydes, unsaturated procedure

The 5-oxohexanal 27 is prepared by the following three-step procedure (1) 1,2-addition of allylmagnesium bromide to an a, / -unsaturated aldehyde to give the 3-hydroxy-1,5-diene 25, (2) oxy-Cope rearrangement of 25 to give 26, and (3) palladium catalyzed oxidation to afford 27. The method was applied to the synthesis of A -2-octalone (28), which is difficult to prepare by the Robinson annulation[25]. [Pg.26]

The procedure described illustrates a general method for the preparation of o ,j3-unsaturated aldehydes and ketones from the enol ethers of 3-dicarbonyl compounds. [Pg.16]

Several improved methods for the preparation of known unsaturated azlactones as well as some interesting new compounds of this type have been reported. Crawford and Little observed that the direct use of 2-phenyl-5-oxazolone (1) in the Erlenmeyer reaction gave much improved yields (35-74%) of unsaturated azlactones with aliphatic aldehydes and with ketones such as acetone and cyclohexanone [Eq, (1)], The usual procedure of mixing a carbonyl compound, hippuric acid, acetic anhydride, and sodium (or lead) acetate affords poor yields in the aliphatic series. [Pg.76]

A reiterative application of a two-carbon elongation reaction of a chiral carbonyl compound (Homer-Emmonds reaction), reduction (DIBAL) of the obtained trans unsaturated ester, asymmetric epoxidation (SAE or MCPBA) of the resulting allylic alcohol, and then C-2 regioselective addition of a cuprate (Me2CuLi) to the corresponding chiral epoxy alcohol has been utilized for the construction of the polypropionate-derived chain ]R-CH(Me)CH(OH)CH(Me)-R ], present as a partial structure in important natural products such as polyether, ansamycin, or macro-lide antibiotics [52]. A seminal application of this procedure is offered by Kishi s synthesis of the C19-C26 polyketide-type aliphatic segment of rifamycin S, starting from aldehyde 105 (Scheme 8.29) [53]. [Pg.290]

A one-pot procedure from aldehydes, through Wittig olefmation and a subsequent epoxidation, was also reported. Aldehydes could be converted into a,P,y,8-unsaturated N-acyl pyrroles, which were epoxidized in the same pot to give N-acyl pyrrole-substituted vinylepoxides [32]. [Pg.320]

Recently, several one-pot oxidation-Wittig procedures that circumvent the need to isolate the intermediate aldehydes have been developed. Various oxidants, including Swern [52], Dess-Martin periodinane [53], IBX [54], Mn02 [55], and BaMnCU [56], can be used in the presence of stabilized ylides to generate a,(3-unsaturated esters. [Pg.323]

When unsymmetrical ketones were used in this reaction (with BF3 as catalyst), the less highly substituted carbon preferentially migrated. The reaction can be made regioselective by applying this method to the a-halo ketone, in which case only the other carbon migrates. The ethyl diazoacetate procedure has also been applied to the acetals or ketals of a, P-unsaturated aldehydes and ketones. ... [Pg.1408]

Although the unsaturated nitrile oxides 124 can be prepared via the aldoxime route (see Scheme 8), the older procedure suffers from the disadvantage that a tenfold excess of allyl alcohol and two additional steps are required when compared to Scheme 15. Therefore, unsaturated nitro ether 123 that can be prepared by condensation of an aldehyde 120 and a nitro alkane followed by Michael addition of alcohol 122, was a useful precursor to nitrile oxide 124 [381. The nitrile oxide 124 spontaneously cyclized to ether 125. This procedure is particularly suitable for the synthesis of tetrahydrofurans (125a-h) and tetrahydropyrans (125i-k) possessing Ar substituents in 72-95% yield (Table 12). The seven-membered ether 1251 was obtained only in 30% yield on high dilution. The acetylenic nitro ether 126 underwent INOC reaction to provide the isoxazole 127. [Pg.18]

Using the above procedures, allyl a-azido alkyl ethers of type 281 were prepared by employing an unsaturated alcohol such as allyl alcohol [76] (Scheme 32). The reaction of an aldehyde with allyl alcohol and HN3 in a ratio of 1 3 9 carried out in the presence of TiCl4 as catalyst provided azido ethers 281, 283, and 285 in 70-90% yield. The ratio of reagents is critical to ensure a high yield of azido ether and to prevent formation of acetal and diazide side products [75]. Thermolysis of azido alkenes 281, 283, and 285 in benzene (the solvent of choice) for 6-20 h led to 2,5-dihydrooxazoles 282,284, and 286, respectively, in 66-90% yield. [Pg.41]

Both aliphatic and aromatic terminal alkynes reacted with aliphatic aldehydes giving exclusively a mixture of ( ,Z)-1,5-dihalo-1,4-dienes and disubstituted ( )-a,p-unsaturated ketones, the former being the major products in all cases. When nonterminal aromatic acetylenes were used, the trisubstituted ( )-a,p-unsat-urated ketones were the exclusive compounds obtained. The procedure was not valid for ahphatic and unsaturated alkymes. However, the catalytic system was found to be compatible with alcohols and their corresponding acetates although limited yields were obtained. [Pg.9]

Scheme 2.18 gives some representative olefination reactions of phosphonate anions. Entry 1 represents a typical preparative procedure. Entry 2 involves formation of a 2,4-dienoate ester using an a, 3-unsaturated aldehyde. Diethyl benzylphosphonate can be used in the Wadsworth-Emmons reaction, as illustrated by Entry 3. Entries 4 to 6 show other anion-stabilizing groups. Intramolecular reactions can be used to prepare cycloalkenes.264... [Pg.166]

A useful and simple method for the one-pot preparation of highly functionalized, enanhomerically pure cyclopentanes from readily accessible carbohydrate precursors has been designed by Chiara and coworkers [73]. The procedure depends on a samarium(II) iodide-promoted reductive dealkoxyhalogenahon of 6-desoxy-6-iodo-hexopyranosides such as 7-160 to produce a 6,e-unsaturated aldehyde which, after reductive cyclization, is trapped by an added electrophile to furnish the final product. In the presence of acetic anhydride, the four products 7-161 to 7-164 were obtained from 7-160. [Pg.523]

A series of functionalized tetrahydrothiophenes has been prepared by acid induced organocatalytic reactions involving a,p-unsaturated aldehydes and 2-mercapto-l-phenylethanone 24. This procedure led to good yields of products displaying useful enantiomeric excess, as illustrated by construction of the target 25 in the presence of the catalyst 26 <06JA14986>. [Pg.115]

The synthetic utility of the carbonylation of zirconacycles was further enhanced by the development of a pair of selective procedures producing either ketones or alcohols [30] and has been extensively applied to the synthesis of cyclic ketones and alcohols, most extensively by Negishi [22—27,29—33,65,87,131—134], as detailed below in Section I.4.3.3.4. The preparation of unsaturated aldehydes by carbonylation with CO is not very satisfactory. The use of isonitriles in place of CO, however, has provided a useful alternative [135], and this has been applied to the synthesis of curacin A [125]. Another interesting variation is the cyanation of alkenes [136]. Further developments and a critical comparison with carbonylation using CO will be necessary before the isonitrile reaction can become widely useful. The relevant results are shown in Scheme 1.35. [Pg.24]

A modified version of the Brown-Negishi reaction using B-alkylcatechol-boranes was reported (Scheme 32). This novel method is based on a simple one-pot procedure involving the hydroboration of various substituted alkenes with catecholborane, followed by treatment with catalytic amount of oxygen/DMPU/water and a radical trap. Efficient radical additions to a,ft-unsaturated ketones and aldehydes have been reported. Primary alkyl radicals are efficiently generated by this procedure and the reaction has been applied to a 300 mmol scale synthesis of the y-side chain of (-)-perturasinic... [Pg.98]

Tandem procedures under hydroformylation conditions cannot only make use of the intrinsic reactivity of the aldehyde carbonyl group and its acidic a-position but they also include conversions of the metal alkyl and metal acyl systems which are intermediates in the catalytic cycle of hydroformylation. Metal alkyls can undergo -elimination leading to olefin isomerization, or couplings, respectively, insertion of unsaturated units enlarging the carbon skeleton. Similarly, metal acyls can be trapped by addition of nucleophiles or undergo insertion of unsaturated units to form synthetically useful ketones (Scheme 1). [Pg.75]

A viable iron carbonyl-mediated reduction process converts acid chlorides and bromoalkanes into aldehydes [3, 6]. Yields are high, with the exception of nitro-benzoyl chloride, and the procedure is generally applicable for the synthesis of alkyl, aryl and a,(i-unsaturated aldehydes from the acid chlorides. The reduction proceeds via the initial formation of the acyl iron complex, followed by hydride transfer and extrusion of the aldehyde (cf. Chapter 8). [Pg.501]

The procedure described here provides a simple and general method for the Construction of optically active 3-cyclohexene-1 -carboxaldehydes.2 The reaction has jftieen applied successfully to a series of a,p-unsaturated aldehydes with dienes fTable). Several methods are described in the literature for asymmetric Diels-Alder... [Pg.199]

On the other hand, the method of Mukaiyama can be succesfully applied to silyl enol ethers of acetic and propionic acid derivatives. For example, perfect stereochemical control is attained in the reaction of silyl enol ether of 5-ethyl propanethioate with several aldehydes including aromatic, aliphatic and a,j5-unsaturated aldehydes, with syir.anti ratios of 100 0 and an ee >98%, provided that a polar solvent, such as propionitrile, and the "slow addition procedure " are used. Thus, a typical experimental procedure is as follows [32e] to a solution of tin(II) triflate (0.08 mmol, 20 mol%) in propionitrile (1 ml) was added (5)-l-methyl-2-[(iV-l-naphthylamino)methyl]pyrrolidine (97b. 0.088 mmol) in propionitrile (1 ml). The mixture was cooled at -78 °C, then a mixture of silyl enol ether of 5-ethyl propanethioate (99, 0.44 mmol) and an aldehyde (0.4 mmol) was slowly added to this solution over a period of 3 h, and the mixture stirred for a further 2 h. After work-up the aldol adduct was isolated as the corresponding trimethylsilyl ether. Most probably the catalytic cycle is that shown in Scheme 9.30. [Pg.267]

Catalytic one-pot procedure. Since in the described teUuronium ylide olefmation tellurox-ide is formed as a by-product, and the telluroxide is susceptible to reduction by triphenyl phosphite, a catalytic procedure can be employed, providing a practical one-pot synthesis of a, -unsaturated esters and ketones (method E). By this procedure, a catalytic amount of n-dibutyl telluride reacts with the a-bromoester or a-bromoketone, and the formed tel-luronium salt is converted in situ under phase transfer conditions (solid KjCOj/trace HjO) into the ylide, which reacts in turn with the aldehyde, giving the olefin. Since the reaction is performed in the presence of triphenyl phosphite, the formed dibutyl telluroxide is reduced back to the dibutyl telluride, which is then recycled. [Pg.219]


See other pages where Aldehydes, unsaturated procedure is mentioned: [Pg.10]    [Pg.47]    [Pg.226]    [Pg.771]    [Pg.4]    [Pg.80]    [Pg.553]    [Pg.1547]    [Pg.23]    [Pg.29]    [Pg.165]    [Pg.169]    [Pg.153]    [Pg.153]    [Pg.320]    [Pg.420]    [Pg.798]    [Pg.517]    [Pg.157]    [Pg.436]    [Pg.400]    [Pg.111]    [Pg.4]    [Pg.16]    [Pg.74]    [Pg.123]    [Pg.148]    [Pg.184]    [Pg.106]    [Pg.220]    [Pg.15]   
See also in sourсe #XX -- [ Pg.288 ]




SEARCH



Aldehydes, unsaturated

© 2024 chempedia.info