Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aldehyde Enantioselective hydroxylation

Covalently bonded chiral auxiliaries readily induce high stereoselectivity for propionate enolates, while the case of acetate enolates has proved to be difficult. Alkylation of carbonyl compound with a novel cyclopentadienyl titanium carbohydrate complex has been found to give high stereoselectivity,44 and a variety of ft-hydroxyl carboxylic acids are accessible with 90-95% optical yields. This compound was also tested in enantioselective aldol reactions. Transmetalation of the relatively stable lithium enolate of t-butyl acetate with chloro(cyclopentadienyl)-bis(l,2 5,6-di-<9-isopropylidene-a-D-glucofuranose-3-0-yl)titanate provided the titanium enolate 66. Reaction of 66 with aldehydes gave -hydroxy esters in high ee (Scheme 3-23). [Pg.155]

As the t-butyl group can readily be removed upon acidic or basic hydrolysis, this method can also be used for //-hydroxyl acid synthesis. In analogy with allylation reactions, the enolate added preferentially to the Re-face of the aldehydes in aldol reactions. Titanium enolate 66 tolerates elevated temperatures, while the enantioselectivity of the reaction is almost temperature independent. The reaction can be carried out even at room temperature without significant loss of stereoselectivity. We can thus conclude that this reaction has the following notable advantages High enantiomeric excess can be obtained (ee > 90%) the reaction can be carried out at relatively high temperature the chiral auxiliary is readily available and the chiral auxiliary can easily be recovered.44... [Pg.155]

Enantioselective a-hydroxylotion of carbonyl compounds. The lithium enolates of the SAMP-hydrazones of ketones undergo facile and diastereoselective oxidation with 2-phenylsulfonyl-3-phenyloxaziridine (13, 23-24) to provide, after ozonolysis, (R)-a-hydroxy ketones in about 95% ee. High enantioselectivity in hydroxylation of aldehydes requires a more demanding side chain on the pyrrolidine ring such as —QCjHOjOCH, which also results in reversal of the configuration. [Pg.22]

The rabbit FruA discriminates the enantiomers of its natural substrate with a 20 1 preference for D-GA3P (12) over its L-antipode [202], Assistance from anionic binding was revealed by a study on a homologous series of carboxylated 2-hydroxyaldehydes which showed optimum enantioselectivity when the distance of the charged group equaled that of 12 (Scheme 15, Fig. 11) [299], The resolution of racemic substrates is not, however, generally useful since the kinetic enantioselectivity for nonionic aldehydes is rather low [202], 3-Azido substituents (69) can lead to an up to 9-fold preference of enantiomers in kinetically controlled experiments [300] while hydroxyl (70 preference for the... [Pg.138]

CPO catalyzes the oxidation of 2-alkynes to aldehydes in the presence of H202 or tBuOOH via an alcoholic intermediate as depicted in Scheme 2.18 [242]. Propargylic alcohols are rapidly oxidized to the corresponding aldehydes [243] and there is a report about highly enantioselective propargylic hydroxylations catalyzed by CPO [244], In addition, a number of primary alcohols are selectively oxidized to aldehydes in a biphasic mixture of hexane and a buffer (Scheme 2.18) [245, 246]. [Pg.59]

A hydroxylative Knoevenagel reaction of the aldehyde 873 proceeds in the presence of phenylsulfinyl acetonitrile to afford the 5,6-dihydropyran-2-one 874, an intermediate during the enantioselective total synthesis of (+)-allo-cyathin B2 (Scheme 242) <2005JA10259>. [Pg.614]

Batch reactors based on peroxidases are mainly applied for degradation purposes (see Chap. 8). LiP, manganese peroxidase (MnP), HRP, SBP, and CPO were used for the oxidation of phenolic compounds [3, 6, 7, 9, 20, 38, 74, 75, 95], decoloriza-tion of dye-containing effluents [5, 22], and pulp biobleaching [59]. In the field of synthesis, CPO is the most versatile and promising of the peroxidases (see Chap. 6). It was applied in discontinuous operation for epoxidations [78,79], enantioselective oxidations of alcohols to aldehydes [14,48], halogenations [77,80], hydroxylations, and oxidation of indole to oxindole, which is an important drug precursor [96]. [Pg.254]

In particular, the use of hydroxynitrile lyase has proved to be a general and reliable method for obtaining a-hydroxy nitriles of both configurations [22]. An interesting approach is the Upase- and baseacyl-cyanohydrin for a synthetic DKR [23]. This is a combination of two reaction systems the dynamic, base-catalyzed equiUbrium between acetone cyanohydrin, acetone, HCN, aldehyde and a racemic cyanohydrin and the lipase-catalyzed enantioselective and irreversible acylation of the hydroxyl group. The combination yields the... [Pg.201]

Among DASF derivatives examined, the compound 32 prepared from the diselenide 2 and cyclohexene oxide was revealed to be the best catalyst for this addition, giving up to 94 % ee. It is noteworthy that the sulfur (33) and tellurium analogues (34) of 32 also catalyzed the reaction to afford the alcohol, but with lower enantioselectivity (52% and 46% ee, respectively). Related compounds 35 and 36 do not act at all as a catalyst for the reaction, indicating that the presence of both hydroxyl and dimethylamino groups in 32 are indispensable to act as an efficient asymmetric catalyst. Typical results of enantioselective addition of diethylzinc to aldehydes other than benzaldehyde catalyzed by 32 are also summarized in Table 4. [Pg.244]

Optically active 1,2-diol units are often observed in nature as carbohydrates, macrolides or polyethers, etc. Several excellent asymmetric dihydroxylation reactions of olefins using osmium tetroxide with chiral ligands have been developed to give the optically active 1,2-diol units with high enantioselectivities. However, there still remain some problems, for example, preparation of the optically active anti-1,2-diols and so on. The asymmetric aldol reaction of an enol silyl ether derived from a-benzyloxy thioester with aldehydes was developed in order to introduce two hydroxyl groups simultaneously with stereoselective carbon-carbon bond formation by using the chiral tin(II) Lewis acid. For example, various optically active anti-a,p-dihydroxy thioester derivatives are obtained in good yields with excellent diastereo-... [Pg.431]

The substrate specificity of the enzyme is shown in Tabs. 4 and 5. The enzyme catalyzed the oxidation of a number of aliphatic alcohols enantioselectively and the reduction of a number of aliphatic aldehydes and ketones. The enzyme was shown to oxidize the hydroxyl group on the 3-position but not the 1-position of (S)-l,3-BDO, as the enzyme oxidized (S)-l,3-BDO to 4H2B. [Pg.225]

Novel organic molecules derived from L-proline and amines or amino alcohols, were found to catalyse the asymmetric direct aldol reaction with high efficiency. Notably those containing L-proline amide moiety and terminal hydroxyl group could catalyse direct asymmetric aldol reactions of aldehydes in neat acetone with excellent results[1]. Catalyst (1), prepared from L-proline and (IS, 2Y)-diphcnyl-2-aminoethanol, exhibits high enantioselectivities of up to 93% ee for aromatic aldehydes and up to >99% ee for aliphatic aldehydes. [Pg.208]


See other pages where Aldehyde Enantioselective hydroxylation is mentioned: [Pg.174]    [Pg.292]    [Pg.693]    [Pg.302]    [Pg.329]    [Pg.128]    [Pg.284]    [Pg.226]    [Pg.131]    [Pg.391]    [Pg.115]    [Pg.557]    [Pg.270]    [Pg.13]    [Pg.163]    [Pg.183]    [Pg.113]    [Pg.191]    [Pg.218]    [Pg.237]    [Pg.143]    [Pg.214]    [Pg.425]    [Pg.441]    [Pg.441]    [Pg.48]    [Pg.162]    [Pg.17]    [Pg.234]    [Pg.117]    [Pg.17]    [Pg.485]    [Pg.1039]    [Pg.36]   
See also in sourсe #XX -- [ Pg.152 ]

See also in sourсe #XX -- [ Pg.152 ]




SEARCH



Aldehydes enantioselective

Enantioselective hydroxylation

Enantioselective hydroxylations

Enantioselectivity aldehydes

© 2024 chempedia.info