Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alcohols silanes

Note Nonpolar solvent soluble in alcohols, ethers, chloroform, benzene, and most fixed and volatile oils insoluble in water nonflammable extremely toxic by inhalation, ingestion, or skin absorption carcinogenic incompatible with allyl alcohol, silanes, triethyldialuminum, and many metals (e.g., sodium). Synonyms tetrachloromethane, perchloromethane, methane tetrachloride, Halon-104. [Pg.337]

Alcohol Silane Temperature" Reaction time (h) Yield % by GPC Product... [Pg.390]

Water and Alcohols, Silanes do not react with pure water or sUghdy acidified water under normal conditions. A rapid reaction occurs, however, in basic solution with quantitative evolution of hydrogen (3). Alkali leached from glass is sufficient to lead to the hydrolysis of silanes. [Pg.22]

Carrying medium (water or alcohol) silane concentration, solution pH and temperature... [Pg.259]

Silane reacts with methanol at room temperature to produce methoxymonosilanes such as Si(OCH2)4 [78-10-4] HSi(OCH2)3, and H2Si(OCH3)2 [5314-52-3] but not H SiOCH [2171 -96-2] (23). The reaction is catalyzed by copper metal. In the presence of alkoxide ions, SiH reacts with various alcohols, except CH OH, to produce tetraalkoxysHanes and hydrogen (24). [Pg.22]

The most common catalysts in order of decreasing reactivity are haUdes of aluminum, boron, zinc, and kon (76). Alkali metals and thek alcoholates, amines, nitriles, and tetraalkylureas have been used (77—80). The largest commercial processes use a resin—catalyst system (81). Trichlorosilane refluxes in a bed of anion-exchange resin containing tertiary amino or quaternary ammonium groups. Contact time can be used to control disproportionation to dichlorosilane, monochlorosilane, or silane. [Pg.23]

The reaction of halosilanes with alcohols proceeds analogously. Dihinctional amines react with tetrahalosilanes to yield tetrakis(dialkylamino)silanes. [Pg.31]

The partially alkoxylated chlorotitanates, (RO) TiCl, can be prepared in high purity by reaction of TiCl with an organosilane ester, Si(OR)4 (see Silicon compounds). The degree of esterification of the titanium can be controlled by the amount of silane ester used. When is 3 or 4, the addition of the appropriate alcohol and an amine receptor is required (5). [Pg.138]

Many other reactions of ethylene oxide are only of laboratory significance. These iaclude nucleophilic additions of amides, alkaU metal organic compounds, and pyridinyl alcohols (93), and electrophilic reactions with orthoformates, acetals, titanium tetrachloride, sulfenyl chlorides, halo-silanes, and dinitrogen tetroxide (94). [Pg.454]

Dianion formation from 2-methyl-2-propen-l-ol seems to be highly dependent on reaction conditions. Silylation of the dianion generated using a previously reported method was unsuccessful in our hands. The procedure described here for the metalation of the allylic alcohol is a modification of the one reported for formation of the dianion of 3-methyl-3-buten-l-ol The critical variant appears to be the polarity of the reaction medium. In solvents such as ether and hexane, substantial amounts (15-50%) of the vinyl-silane 3 are observed. Very poor yields of the desired product were obtained in dirnethoxyethane and hexamethylphosphoric triamide, presumably because of the decomposition of these solvents under these conditions. Empirically, the optimal solvent seems to be a mixture of ether and tetrahydrofuran in a ratio (v/v) varying from 1.4 to 2.2 in this case 3 becomes a very minor component. [Pg.65]

Sol-gel primers use inorganic or metal-organic precursors (generally aluminum, silicon or titanium alkoxides) whose chemistry is closely related to the silane coupling agents discussed previously. These precursors are dissolved in alcohol, then hydrolyzed by the addition of water ... [Pg.444]

The length of the axial bond would be expected on all theories to be important. The barrier height does decline from ethane to methyl silane to methyl germane, but of course the bonded atoms are different. Unfortunately reliable values are not available for dimethyl mercury, dimethyl acetylene, and similar molecules with still longer bonds. An apparent exception is provided by methyl mercaptan and methyl alcohol. The latter, with the shorter axial bond, has the lower barrier. [Pg.382]

Tertiary aliphatic alcohols Methyl esters of carboxylic acids Esters of n-chain carboxylic acids Silanes... [Pg.139]

These poly(2-alkyl-2-oxazoline) silane coupling agents were copolycondensed with tetraethoxysilane by acid-catalyst to produce poly(2-alkyl-2-oxazoline)-modified silica gel. The composite gel from 2-ethyl-2-oxazoline was also homogeneous and transparent glass. Poly(2-alkyl-2-oxazoline)-modified silica gels, especially gels based on poly(2-ethyl-2-oxazoline) absorbed water and also organic solvents such as DMF or alcohols as shown in Table 7. This result means that the obtained composite gel shows the amphiphilic adsorption property. [Pg.26]

This excellent method of oxidative cleavage (/) of carbon-silicon bonds requires that the silane carry an electronegative substituent (2), such as alkoxy or fluoro. Either hydrogen peroxide or mcpba may be used as oxidant, and the alcohol is produced with retention of configuration (3). Fluoride ion is normally a mandatory additive in what is believed to be a fluoride ion-assisted rearrangement of a silyl peroxide, as shown below ... [Pg.123]

The structurally simplest silicon reagent that has been used to reduce sulphoxides is the carbene analog, dimethylsilylene (Me2Si )29. This molecule was used as a mechanistic probe and did not appear to be useful synthetically. Other silanes that have been used to reduce sulphoxides include iodotrimethylsilane, which is selective but unstable, and chlorotrimethylsilane in the presence of sodium iodide, which is easy to use, but is unselective since it cleaves esters, lactones and ethers it also converts alcohols into iodides. To circumvent these complications, Olah30 has developed the use of methyltrichlorosilane, again in the presence of sodium iodide, in dry acetonitrile (equation 8). A standard range of sulphoxides was reduced under mild conditions, with yields between 80 and 95% and with a simple workup process. The mechanism for the reaction is probably very similar to that given in equation (6), if the tricoordinate boron atoms in this reaction scheme are replaced... [Pg.929]

Although the actual reaction mechanism of hydrosilation is not very clear, it is very well established that the important variables include the catalyst type and concentration, structure of the olefinic compound, reaction temperature and the solvent. used 1,4, J). Chloroplatinic acid (H2PtCl6 6 H20) is the most frequently used catalyst, usually in the form of a solution in isopropyl alcohol mixed with a polar solvent, such as diglyme or tetrahydrofuran S2). Other catalysts include rhodium, palladium, ruthenium, nickel and cobalt complexes as well as various organic peroxides, UV and y radiation. The efficiency of the catalyst used usually depends on many factors, including ligands on the platinum, the type and nature of the silane (or siloxane) and the olefinic compound used. For example in the chloroplatinic acid catalyzed hydrosilation of olefinic compounds, the reactivity is often observed to be proportional to the electron density on the alkene. Steric hindrance usually decreases the rate of... [Pg.14]

The synthesis of PDMS macromonomers with vinyl silane end-groups and their free-radical copolymerization with vinyl acetate, leading to poly(vinyl acetate)-PDMS graft copolymers, was described 346). The copolymers produced were later hydrolyzed to obtain poly(vinyl alcohol)-PDMS graft copolymers. [Pg.56]

Allyl silanes react with epoxides, in the presence of Bp3-OEt2 to give 2-allyl alcohols. The reaction of a-bromo lactones and CH2=CHCH2Si SiMe3)3 and AIBN leads to the a-allyl lactone. " Benzyl silanes coupled with allyl silanes to give ArCH2—R derivatives in the presence of VO(OEt)Cl2 " and allyltin compounds couple with allyl silanes in the presence of SnCU. " Allyl silanes couple to the a-carbon of amines under photolysis conditions. ... [Pg.535]


See other pages where Alcohols silanes is mentioned: [Pg.682]    [Pg.57]    [Pg.682]    [Pg.79]    [Pg.682]    [Pg.57]    [Pg.682]    [Pg.79]    [Pg.564]    [Pg.495]    [Pg.108]    [Pg.77]    [Pg.26]    [Pg.440]    [Pg.441]    [Pg.463]    [Pg.221]    [Pg.106]    [Pg.181]    [Pg.214]    [Pg.8]    [Pg.52]    [Pg.92]    [Pg.278]    [Pg.374]    [Pg.18]    [Pg.129]    [Pg.129]    [Pg.199]    [Pg.22]    [Pg.801]    [Pg.1039]   
See also in sourсe #XX -- [ Pg.8 , Pg.216 ]

See also in sourсe #XX -- [ Pg.8 , Pg.216 ]




SEARCH



Alcohols from allylic silanes

Alcohols from silanes

Homoallylic alcohol, from allyl silane

Silane To alcohol

Silane, diiododimethylreduction benzylic alcohols

Silane, iodotrimethylBeckmann rearrangement alkyl alcohols

Silane, triethylionic hydrogenation alcohols

Silanes reaction with alcohols

© 2024 chempedia.info