Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Enol esters reaction with alcohols

Therefore, transesterification reactions frequently fail when R is tertiary, since this type of substrate most often reacts by alkyl-oxygen cleavage. In such cases, the reaction is of the Williamson type with OCOR as the leaving group (see 10-14). With enol esters, the free alcohol is the enol of a ketone, so such esters easily... [Pg.487]

With enol esters, the free alcohol is the enol of a ketone, so such esters easily undergo the reaction... [Pg.397]

With enol esters such as 102, reaction with an alcohol gives an ester and the enol of a ketone, which readily tautomerizes to the ketone as shown. Hence, enol esters are good acylating agents for alcohols.This transformation has been... [Pg.1420]

Early extensive accounts of the 4v participation of a,/)-unsaturated carbonyl compounds in [4 + 2] cycloadditions detailed their reactions with electron-deficient dienophiles including a,/3-unsaturated nitriles, aldehydes, and ketones simple unactivated olefins including allylic alcohols and electron-rich dienophiles including enol ethers, enamines, vinyl carbamates, and vinyl ureas.23-25 31-33 Subsequent efforts have recognized the preferential participation of simple a,/3-unsaturated carbonyl compounds (a,/3-unsaturated aldehydes > ketones > esters) in inverse electron demand [4 + 2] cycloadditions and have further explored their [4 + 2]-cycloaddition reactions with enol ethers,34-48 acetylenic ethers,48 49 ke-tene acetals,36-50 enamines,4151-60-66 ynamines,61-63 ketene aminals,66 and selected simple olefins64-65 (Scheme 7-1). Additional examples may be found in Table 7-1. [Pg.272]

Aqueous acid workup of 92 gives the alcohol, 93. With malonic ester derivatives, loss of water to form 94 occurs very easily, with dilute acid or with gentle heating because the C=C unit is conjugated to two carbonyl groups, facilitating dehydration. Although it is possible to isolate 83, it is more usually difficult. The enolate anion of malonate esters also reacts with ketones and may be condensed with other esters in acyl substitution reactions. When 90 is treated with NaOEt in ethanol and then with ethyl butanoate, the final product after mild hydrolysis is a keto-diester, 95. [Pg.1153]

The hydrogenolyaia of cyclopropane rings (C—C bond cleavage) has been described on p, 105. In syntheses of complex molecules reductive cleavage of alcohols, epoxides, and enol ethers of 5-keto esters are the most important examples, and some selectivity rules will be given. Primary alcohols are converted into tosylates much faster than secondary alcohols. The tosylate group is substituted by hydrogen upon treatment with LiAlH (W. Zorbach, 1961). Epoxides are also easily opened by LiAlH. The hydride ion attacks the less hindered carbon atom of the epoxide (H.B. Henhest, 1956). The reduction of sterically hindered enol ethers of 9-keto esters with lithium in ammonia leads to the a,/S-unsaturated ester and subsequently to the saturated ester in reasonable yields (R.M. Coates, 1970). Tributyltin hydride reduces halides to hydrocarbons stereoselectively in a free-radical chain reaction (L.W. Menapace, 1964) and reacts only slowly with C 0 and C—C double bonds (W.T. Brady, 1970 H.G. Kuivila, 1968). [Pg.114]

Generally, isolated olefinic bonds will not escape attack by these reagents. However, in certain cases where the rate of hydroxyl oxidation is relatively fast, as with allylic alcohols, an isolated double bond will survive. Thepresence of other nucleophilic centers in the molecule, such as primary and secondary amines, sulfides, enol ethers and activated aromatic systems, will generate undesirable side reactions, but aldehydes, esters, ethers, ketals and acetals are generally stable under neutral or basic conditions. Halogenation of the product ketone can become but is not always a problem when base is not included in the reaction mixture. The generated acid can promote formation of an enol which in turn may compete favorably with the alcohol for the oxidant. [Pg.233]

Thus the reactions of cyclic or acyclic enamines with acrylic esters or acrylonitrile can be directed to the exclusive formation of monoalkylated ketones (3,294-301). The corresponding enolate anion alkylations lead preferentially to di- or higher-alkylation products. However, by proper choice of reaction conditions, enamines can also be used for the preferential formation of higher alkylation products, if these are desired. Such reactions are valuable in the a substitution of aldehydes, which undergo self-condensation in base-catalyzed reactions (117,118). Monoalkylation products are favored in nonhydroxylic solvents such as benzene or dioxane, whereas dialkylation products can be obtained in hydroxylic solvents such as methanol. The difference in products can be ascribed to the differing fates of an initially formed zwitterionic intermediate. Collapse to a cyclobutane takes place in a nonprotonic solvent, whereas protonation on the newly introduced substitutent and deprotonation of the imonium salt, in alcohol, leads to a new enamine available for further substitution. [Pg.359]

The reaction between acyl halides and alcohols or phenols is the best general method for the preparation of carboxylic esters. It is believed to proceed by a 8 2 mechanism. As with 10-8, the mechanism can be S l or tetrahedral. Pyridine catalyzes the reaction by the nucleophilic catalysis route (see 10-9). The reaction is of wide scope, and many functional groups do not interfere. A base is frequently added to combine with the HX formed. When aqueous alkali is used, this is called the Schotten-Baumann procedure, but pyridine is also frequently used. Both R and R may be primary, secondary, or tertiary alkyl or aryl. Enolic esters can also be prepared by this method, though C-acylation competes in these cases. In difficult cases, especially with hindered acids or tertiary R, the alkoxide can be used instead of the alcohol. Activated alumina has also been used as a catalyst, for tertiary R. Thallium salts of phenols give very high yields of phenolic esters. Phase-transfer catalysis has been used for hindered phenols. Zinc has been used to couple... [Pg.482]

Conversion of ketone 80 to the enol silane followed by addition of lithium aluminum hydride to the reaction mixture directly provides the allylic alcohol 81 [70]. Treatment of crude allylic alcohol 81 with tert-butyldimethylsilyl chloride followed by N-b ro m o s u cc i n i m i de furnishes the a-bromoketone 82 in 84 % yield over the two-step sequence from a.p-unsaturated ester 80. Finally, a one-pot Komblum oxidation [71] of a-bromoketone 82 is achieved by way of the nitrate ester to deliver the glyoxal 71. It is worth noting that the sequence to glyoxal 71 requires only a single chromatographic purification at the second to last step (Scheme 5.10). [Pg.122]


See other pages where Enol esters reaction with alcohols is mentioned: [Pg.235]    [Pg.276]    [Pg.239]    [Pg.203]    [Pg.262]    [Pg.289]    [Pg.525]    [Pg.131]    [Pg.183]    [Pg.853]    [Pg.980]    [Pg.63]    [Pg.150]    [Pg.481]    [Pg.20]    [Pg.63]    [Pg.40]    [Pg.569]    [Pg.187]    [Pg.197]   
See also in sourсe #XX -- [ Pg.487 ]




SEARCH



Alcoholic esters

Alcohols reaction with esters

Enol esters

Enol esters reaction

Enol esters with alcohols

Enolates enol esters

Enols reactions with

Ester enolate

Ester enolates reaction with

Esters alcohols

Esters enolates

Esters enolization

Reaction with alcohols

Reaction with enol esters

Reactions, with enolates

© 2024 chempedia.info