Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alanes reactions

Rigopoulos, Stelios and Alan G. Jones, 2001. Dynamic Modelling of a Bubble Column for Particle Fonuation via a Gas-Liquid Reaction. Chemical Engineering Science (in press). [Pg.320]

Many novel cluster compounds have now been prepared in this way, including mixed metal clusters. Further routes involve the oxidative fusion of dicarbon metallacarborane anions to give dimetal tetracarbon clusters such as (103) and (104) O (jjg insertion of isonitriles into inetallaborane clusters to give monocarbon meiallacarboranes such as (105) and the reaction of small ii/t/o-carboranes with alane adducts such as Et3NAlH3 to give the commo species (106) ... [Pg.192]

When the hydride ion of lithium alanate is used as nucleophile, cyclohexa-2,4-dien-l-ol is obtained as a labile addition product which eliminates water on standing to give benzene.12 The reaction of an oxepin derivative that possesses a hexamethylene bridge across C3-C6 with sodium methoxide gives an addition product 5 in which the seven-membered heterocyclic system is retained.213 214... [Pg.46]

Niobium, tris(diethyldilhiocarbamato)oxy-stereochemistry, 1,82 structure, 1, 83 Niobium, tris(oxa ato)oxy-stereochcmistry, 1, 82 Niobium, tris(phcnylcncdirhio)-structure, 1, 63 Niobium alanate, 3, 685 Niobium complexes alkyl alkoxy reactions, 2, 358 amides, 2,164 properties, 2, 168 synthesis, 2, 165 applications, 6,1014 carbamicacid, 2, 450 clusters, 3, 672,673,675 hexamethylbenzene ligands, 3, 669 cyanides synthesis, 2, 9 p-dinitrogen, 3, 418 fluoro... [Pg.177]

The reaction between a Lewis acid R3M and a Lewis base ER3, usually resulting in the formation of a Lewis acid-base adduct R3M—ER3, is of fundamental interest in main group chemistry. Numerous experiments, in particular reactions of alane and gallane MH3 with amines and phosphines ER3, have been performed [14]. Several general coordination modes, as summarized in Fig. 2, have been identified by X-ray diffraction. [Pg.121]

These particular properties of chloroalanes favor the formation of simple Lewis acid-base adducts, as was observed for the reaction of R2AICI with Sb(Tms)3 (R = Et, f-Bu). In contrast, reactions of the analogous gallanes and indanes yielded the desired heterocycles. The same tendencies were observed in reactions of R2MCI (M = Al, Ga, In R = Et, i-Bu) with P(Tms)3 and As(Tms)3. The gallane and indane react under formation of the expected M—E heterocycles [71], while the corresponding alanes yield the simple adducts... [Pg.140]

The finding of retention of configuration for this reaction demonstrates that free-radical intermediates are not involved. Lithium organoaluminates LiAlR4 are dimerized to RR by treatment with Cu(OAc)2." Terminal vinylic alanes (prepared by 15-17) can be dimerized to 1,3-dienes with CuCl in Symmetrical 1,3-dienes... [Pg.940]

The aziridine-2-carboxaldehyde 56 can also serve as synthon for the synthesis of sphingosines, which are important biomembrane constituents [64]. One possible route involves the addition of an alanate to the aldehyde. In a later stage of this synthetic plan the aziridine can be opened, either via the intermediacy of an oxazoline or directly with dilute acid. Unfortunately, the reaction of aldehyde 56 with a vinylalanate has a poor diastereoselectivity of 3 2. Therefore, an alternative approach was considered, namely one involving the addition of a vinylzinc reagent to the aldehyde thereby employing our N-tritylaziridinediphenyl-methanol 51 as the chiral catalyst. Gratifyingly, only one diastereomer was obtained. Reductive removal of the trityl function, acetylation of the hydroxy... [Pg.119]

The decomposition is significantly accelerated and the temperature of the first decomposition reaction is lowered to 120°C (Fig. 19.7). The decomposition rate is relatively low compared with other titanium-based dopants. The highest activity of a titanium catalyst used in alanate decomposition was observed for ligand-stabilized colloidal titanium metal [42]. [Pg.287]

The theoretical hmit of 5.4% (NaAlH4+2 mol% TiN) for the two subsequent decomposition reactions is in both cases only observed in the first cycle. The reason for the decrease in capacity is stiU unknown and litde is known about the mechanism of alanate activation via titanium dopants in the sohd state. Certainly, the ease of titanium hydride formation and decomposition plays a key role in this process, but whether titanium substitution in the alanate or the formation of a titanium aluminum alloys, i.e., finely dispersed titanium species in the decomposition products is crucial, is stiU under debate [41]. [Pg.288]

Bis(diamino)alanes (R2N)2A1H were used for the hydroalumination of terminal and internal alkenes [18, 19]. TiCb and CpjTiCb are suitable catalysts for these reactions, whereas CpjZrCb exhibits low catalytic activity. The hydroaluminations are carried out in benzene or THF soluhon at elevated temperatures (60°C). Internal linear cis- and trans-alkenes are converted into n-alkylalanes via an isomerization process. Cycloalkenes give only moderate yields tri- and tetrasubstituted double bonds are inert. Hydroaluminahon of conjugated dienes like butadiene and 1,3-hexa-diene proceeds with only poor selechvity. The structure of the hydroaluminahon product of 1,5-hexadiene depends on the solvent used. While in benzene cyclization is observed, the reaction carried out in THF yields linear products (Scheme 2-10). [Pg.57]

Scheme 4.10 gives some examples of application of alkyne carboalumination in synthesis. The reaction in Entry 1 was carried out as part of a synthesis of the immunosuppressant drug FK-506. The vinyl alane was subsequently transmetallated to a cuprate reagent (see Chapter 8). In Entry 2, the vinyl alane was used as a nucleophile for opening an epoxide ring and extending the carbon chain by two atoms. In Entries 3 to 5, the vinyl alane adducts were converted to vinyl iodides. In Entry 6, the vinyl alane was converted to an ate reagent prior to reaction with formaldehyde. [Pg.356]

The electrophilicity of alane is the basis for its selective reaction with the amide group. Alane is also useful for reducing azetidinones to azetidines. Most nucleophilic hydride reducing agents lead to ring-opened products. DiBAlH, A1H2C1, and A1HC12 can also reduce azetinones to azetidines.100... [Pg.405]

Elucidation of the reaction mechanism of the Sugasawa reaction was initiated under the initiative of Dr. Alan Douglas who was the head of our NMR group [13], The results are summarized in Scheme 1.9. [Pg.11]

The use of water-soluble reagents and catalysts allows reactions to be performed in aqueous buffered solutions. PEG-supported triarylphos-phine has been used in a Wittig reaction under mildly basic aqueous conditions (Eq. 8.115). The PEG-supported phosphine oxide byproduct can be easily recovered and reduced by alane to regenerate the starting reagent for reuse.312 The aqueous Wittig reaction has also been used in... [Pg.279]

Diastereoselective catalytic nitro-aldol reactions of optically active iV-phthaloyl-L-phenyl-alanal with nitromethane in the presence of LLB proceed with high diastereoselectivity (anti syn = 99 1) as shown in Eq. 3.76.125 The product is converted via the Nef reaction into (2S,3S)-3-amino-2-hydroxy-4-phenylbutanoic acid, which is a subunit of the HIV-protease inhibitor... [Pg.58]


See other pages where Alanes reactions is mentioned: [Pg.686]    [Pg.99]    [Pg.686]    [Pg.99]    [Pg.227]    [Pg.125]    [Pg.224]    [Pg.30]    [Pg.956]    [Pg.91]    [Pg.141]    [Pg.152]    [Pg.530]    [Pg.1088]    [Pg.23]    [Pg.279]    [Pg.291]    [Pg.956]    [Pg.38]    [Pg.50]    [Pg.53]    [Pg.64]    [Pg.66]    [Pg.67]    [Pg.288]    [Pg.353]    [Pg.221]    [Pg.376]    [Pg.386]    [Pg.387]    [Pg.78]   


SEARCH



Alanates

Alane

Alanes

© 2024 chempedia.info