Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption theory London forces

The adsorption theory of adhesion attributes adhesive strength to the action of London dispersion forces, combined in many instances with contributions from other forces (dipolar, polar or primary bonding) Calculations indicate that, in spite of their relatively low strength compared with the other types of bonding, these force can account for far greater strengths than are ever achieved experimentally. It is because all these forces are... [Pg.41]

Debye and Keesom forces together with London Dispersion forces are known coiiec-tively as van der Waals forces. See Lifshitz-van der Waals forces for a further discussion. They play a significant role in the Adsorption theory of adhesion and in surface phenomena such as Contact angles and interfacial tension. [Pg.328]

Thus, whenever there is contact between two materials at a molecular level, there will be adhesion. Physical adsorption or chemical adsorption (chemisorption) will occur. Specific types of bonding may be present, but there will always, at least, be London dispersion forces. That is the essential idea of the adsorption theory of adhesion. [Pg.17]

Physical adsorption is a universal phenomena, producing some, if not the major, contribution to almost every adhesive contact. It is dependent for its strength upon the van der Waals attraction between individual molecules of the adhesive and those of the substrate. Van der Waals attraction quantitatively expresses the London dispersion force between molecules that is brought about by the rapidly fluctuating dipole moment within an individual molecule polarizing, and thus attracting, other molecules. Grimley (1973) has treated the current quantum mechanical theories involved in simplified mathematical terms as they apply to adhesive interactions. [Pg.291]

The theory of adsorption forces was developed by London [87,88], de Boer and Custers [89], Lenel [90] and de Boer [91,92]. The studies by Lennard-Jones [93], who proposed the Lennard-Jones attraction - repulsion (6-12) potential used up till now, were of significant importance. Development of mechanics and quantum chemistry (e.g. [94]) had a great effect on understanding the character of... [Pg.10]

The attractive forces between suspension particles are considered to be exclusively London-van der Waals interactions (except where interparticle bridging by long polymeric chains occurs). The repulsive forces, as discussed in Chapter 8, comprise both electrostatic repulsion and entropic and enthalpic forces. In aqueous systems the hydrophobic dispersed phase is coated with hydrophilic surfactant or polymer. As adsorption of surfactant or polymer (or, of course, both) at the solid-liquid interface alters the negative charge on the suspension particles, the adsorbed layer may not necessarily confer a repulsive effect. Ionic surfactants may neutralize the charge of the particles and result in their flocculation. The addition of electrolyte such as aluminium chloride can further complicate interpretation of results electrolyte can alter the charge on the suspension particles by specific adsorption, and can affect the solution properties of the surfactants and polymers in the formulation. Some aspects of the application of DLVO theory to pharmaceutical suspensions and the use of computer programmes to calculate interaction curves are discussed by Schneider et al. [4]. [Pg.570]


See other pages where Adsorption theory London forces is mentioned: [Pg.695]    [Pg.142]    [Pg.243]    [Pg.350]    [Pg.695]    [Pg.138]    [Pg.536]    [Pg.91]    [Pg.5]    [Pg.228]    [Pg.3]    [Pg.252]    [Pg.629]    [Pg.75]   
See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Adsorption theory

Adsorptive force

Adsorptive theory

London

London forces

London theory

© 2024 chempedia.info