Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface tension and adsorption

The GvdW Theory A Density Functional Theory of Adsorption, Surface Tension, and Screening... [Pg.98]

The Natural Hydrocarbons.—Organic chemistry of a very complex kind is involved in the formation and alteration of natural gas and petroleum, and many problems of physics and physical chemistry, such as adsorption, surface tension, and collpid phenomena, are also involved in their underground storage and movements. [Pg.3]

To illustrate the dependence of the mobility function d>y on the concentration of surfactant in the continuous phase, in Fig. 12 we present theoretical curves, calculated in Ref 138 for the nonionic surfactant Triton X-100, for the ionic surfactant SDS ( + 0.1 M NaCl) and for the protein bovine serum albumin (BSA). The parameter values, used to calculated the curves in Fig. 12, are listed in Table 4 and K are parameters of the Langmuir adsorption isotherm used to describe the dependence of surfactant adsorption, surface tension, and Gibbs elasticity on the surfactant concentration (see Tables 1 and 2). As before, we have used the approximation Dj Dj (surface diffusivity equal to the bulk dif-fusivity). The surfactant concentration in Fig. 12 is scaled with the reference concentration cq, which is also given in Table 4 for Triton X-100 and SDS + 0.1 M NaCl, cq is chosen to coincide with the cmc. The driving force, F, was taken to be the buoyancy force for dodecane drops in water. The surface force is identified with the van der Waals attraction the Hamaker function Ajj(A) was calculated by means of Eq. (86) (see below). The mean drop radius in Fig. 12 is a = 20 /pm. As seen in the figure, for such small drops 4>y = 1 for Triton X-100 and BSA, i.e., the drop sur-... [Pg.638]

R. Defay, I. Prigogine, A. Bellemans, and D. H. Everett, Surface Tension and Adsorption, Longmans, Green, London. 1966. [Pg.96]

D. W. Dwight, M. E. Counts, and J. P. Wightman, Colloid and Interface Science, Vol. ni. Adsorption, Catalysis, Solid Surfaces, Wetting, Surface Tension, and Water, Academic, New York, 1976, p. 143. [Pg.464]

Here p/p° is the relative pressure of vapour in equilibrium with a meniscus having a radius of curvature r , and y and Vi are the surface tension and molar volume respectively, of the liquid adsorptive. R and T have their usual meanings. [Pg.113]

Mechanisms of Leukocyte Adsorption. The exact mechanism of leukocyte adhesion to filter media is not yet fuUy understood. Multiple mechanisms simultaneously contribute to the adhesion of cells to biomaterials, however, physical and biological mechanisms have been distinguished. Physical mechanisms include barrier phenomenon, surface tension, and electrostatic charge biological mechanisms include cell activation and cell to cell binding. [Pg.524]

Many of these features are interrelated. Finely divided soHds such as talc [14807-96-6] are excellent barriers to mechanical interlocking and interdiffusion. They also reduce the area of contact over which short-range intermolecular forces can interact. Because compatibiUty of different polymers is the exception rather than the rule, preformed sheets of a different polymer usually prevent interdiffusion and are an effective way of controlling adhesion, provided no new strong interfacial interactions are thereby introduced. Surface tension and thermodynamic work of adhesion are interrelated, as shown in equations 1, 2, and 3, and are a direct consequence of the intermolecular forces that also control adsorption and chemical reactivity. [Pg.100]

The influence of the presence of alcohols on the CMC is also well known. In 1943 Miles and Shedlovsky [117] studied the effect of dodecanol on the surface tension of solutions of sodium dodecyl sulfate detecting a significant decrease of the surface tension and a displacement of the CMC toward lower surfactant concentrations. Schwuger studied the influence of different alcohols, such as hexanol, octanol, and decanol, on the surface tension of sodium hexa-decyl sulfate [118]. The effect of dodecyl alcohol on the surface tension, CMC, and adsorption behavior of sodium dodecyl sulfate was studied in detail by Batina et al. [119]. [Pg.250]

Adsorption of a dipolar substance at the w/a and w/o interfaces changes surface tension and modifies the surface potential of water (Fig. 11). As seen in Fig. 11, the change in compensation voltage due to adsorption is the surface potential difference, usually called the surface potential or better the adsorption potential and often indicated unnecessarily by AV. ... [Pg.37]

Conventional scale inhibitors are hydrophilic, that is, they dissolve in water. In the case of down-hole squeezing, it is desirable that the scale inhibitor is adsorbed on the rock to avoid washing out the chemical before it can act as desired. However, adsorption on the rock may change the surface tension and the wettability of the system. To overcome these disadvantages, oil-soluble scale inhibitors have been developed. Coated inhibitors are also available. Often, scale inhibitors are not applied as such, but rather in combination with corrosion inhibitors. [Pg.103]

Replacement of gas by the nonpolar, e.g., hydrocarbon phase (or oil phase) is used to modify the interactions between molecules in a spread film of investigated long-chain substances [6,15,17,18]. The nonpolar solvent-water interface possesses the advantage over that between gas and water, that the cohesion (i.e., interactions between adsorbed molecules due to dipole and van der Waals forces) is negligible. Thus, at the oil-water interfaces behavior of adsorbates is much closer to ideal, but quantitative interpretation may be uncertain, in particular for the higher chains which are predominantly dissolved in the oil phase to an unknown activity. Adsorption of dipolar substances at the w/a and w/o interfaces changes surface tension and modifies the surface potential of water [15] ... [Pg.33]

This type of fully local potential has some limited use, e.g., to consider adsorption in a slowly varying external potential. It fails, however, to describe the most important phenomena such as surface tension and adsorption at most types of interfaces. These phenomena reflect in a fundamental way the nonlocal interactions in the fluid. The most obvious nonlocality of the free energy arises due to the range of the attractive or soft interactions represented by the second term in the equation of state, —The corresponding potential energy can be obtained by the functional... [Pg.100]

This type of functional, which we refer to as coarse-grained, can be used to calculate both surface tension and adsorption isotherms to quite good accuracy for many fluids and interfaces. It can also be used for screening problems in the theory of electrolytes. [Pg.101]

If the supply of surfactant to and from the interface is very fast compared to surface convection, then adsorption equilibrium is attained along the entire bubble. In this case the bubble achieves a constant surface tension, and the formal results of Bretherton apply, only now for a bubble with an equilibrium surface excess concentration of surfactant. The net mass-transfer rate of surfactant to the interface is controlled by the slower of the adsorption-desorption kinetics and the diffusion of surfactant from the bulk solution. The characteris-... [Pg.484]

Gibbs adsorption equation phys chem A formula for a system involving a solvent and a solute, according to which there Is an excess surface concentration of solute if the solute decreases the surface tension, and a deficient surface concentration of solute if the solute increases the surface tension. gibz ad sorp shan i.kwa-zhon Gibbs adsorption isotherm physchem An equation for the surface pressure of surface [< ... [Pg.166]

MSE. 19.1. Prigogine and A. Bellemans, Statistical mechanics of surface tension and adsorption, in... [Pg.52]

The application of the activity of the surfactant has been examined also for the surface tension and adsorption of disodlum alkyl phosphate(6,7), sodium dodecyl sulfate(37), alkyl trimethylammonium bromide(35 ), and sodium perfluorooctanoate(13) solutions. These studies show that the surface tension and theadsorption amount are controlled by the activity of surfactant, irrespective of the added electrolyte concentration. [Pg.83]

LDAO/SDS Interaction. Mixing of cationic and anionic surfactant solutions results In the formation of a mixed species that Is more surface active than the Individual species. The enhanced synergistic effect has been explained (2,3) by showing that a close-packed adsorption of electroneutral R R takes place (R" " and R represent the long chain cation and anion respectively). In the case of Ci2 and C14-DAO, a 1 1 LDAO/SDS molar ratio produces a minimum In surface tension and Is accompanied by an Increase In pH In the bulk solution the association seems to be of the type R R", and the absence of visible precipitate may be attributed to the solubilization of the R R" complex In the solution. In the region where LDAO Is In excess, the structure Is probably [cationic (LDAOH ) anionic (SDS)] nonlonlc (LDAO), while [cationic (LDAOH anionic (SDS)] anionic (SDS) Is formed when SDS Is In excess. Equal molar concentration results In cationic (LDAOH ) anionic (SDS) complex which should favor precipitation. However, at pH >9, there Is no Indication of precipitation (even when the total solute concentration Is 0.35 M). When the pH Is below 9, then precipitation will take place. [Pg.138]

The problem has been treated theoretically by the use of the Gibbs adsorption isotherm, which has been used with success in treating the interfaces between liquids and gases (30). One of the most easily measurable properties of a liquid is its surface tension, and changes in this quantity can be determined with great accuracy. The surface tension of a liquid is numerically equal to its surface energy, as also are changes in these quantities. [Pg.268]


See other pages where Surface tension and adsorption is mentioned: [Pg.98]    [Pg.117]    [Pg.37]    [Pg.83]    [Pg.102]    [Pg.98]    [Pg.117]    [Pg.37]    [Pg.83]    [Pg.102]    [Pg.91]    [Pg.164]    [Pg.191]    [Pg.25]    [Pg.169]    [Pg.34]    [Pg.100]    [Pg.265]    [Pg.408]    [Pg.46]    [Pg.75]    [Pg.187]    [Pg.29]    [Pg.273]    [Pg.531]    [Pg.26]    [Pg.38]    [Pg.53]   
See also in sourсe #XX -- [ Pg.420 ]




SEARCH



Surface tension adsorption

Surface tension and

© 2024 chempedia.info