Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adsorption isoelectric point

Figure V-8 illustrates that there can be a pH of zero potential interpreted as the point of zero charge at the shear plane this is called the isoelectric point (iep). Because of specific ion and Stem layer adsorption, the iep is not necessarily the point of zero surface charge (pzc) at the particle surface. An example of this occurs in a recent study of zircon (ZrSi04), where the pzc measured by titration of natural zircon is 5.9 0.1... Figure V-8 illustrates that there can be a pH of zero potential interpreted as the point of zero charge at the shear plane this is called the isoelectric point (iep). Because of specific ion and Stem layer adsorption, the iep is not necessarily the point of zero surface charge (pzc) at the particle surface. An example of this occurs in a recent study of zircon (ZrSi04), where the pzc measured by titration of natural zircon is 5.9 0.1...
Physical and ionic adsorption may be either monolayer or multilayer (12). Capillary stmctures in which the diameters of the capillaries are small, ie, one to two molecular diameters, exhibit a marked hysteresis effect on desorption. Sorbed surfactant solutes do not necessarily cover ah. of a sohd iaterface and their presence does not preclude adsorption of solvent molecules. The strength of surfactant sorption generally foUows the order cationic > anionic > nonionic. Surfaces to which this rule apphes include metals, glass, plastics, textiles (13), paper, and many minerals. The pH is an important modifying factor in the adsorption of all ionic surfactants but especially for amphoteric surfactants which are least soluble at their isoelectric point. The speed and degree of adsorption are increased by the presence of dissolved inorganic salts in surfactant solutions (14). [Pg.236]

The effect of pH on the protein adsorption on CMK-3 was also investigated [152], The monolayer adsorption capacities obtained under various pH conditions are plotted in Figure 4.12, where the maximum adsorption was observed in the pH region near the isoelectric point of lysozyme (pi of about 11). Near the isoelectric point, the net charges of the lysozyme molecule are minimized and would form the most compact assembly. A similar pH effect was also seen in the adsorption of cytochrome c on CM K-3. Although the nature of the surface of mesoporous silica and... [Pg.127]

Following similar reasoning, the adsorption pattern observed for ampholytic polyelectrolytes Ocan be explained. As illustrated in Fig. 4, polyampholytes show maximum adsorption around their isoelectric point (i.e., the pH where the net charge of the polyampholyte is zero). [Pg.103]

Fig. 4. Influence of pH on the plateau-value /T of adsorption isotherms of polyampholytes. At either side of the isoelectric point, i.e.p., the polyampholyte attains a net charge causing intra- and intermolecular electrostatic repulsion. As a result, the mass of adsorbed polyampholyte, that can be accommodated per unit area of the sorbent surface, decreases. Electrostatic interactions are suppressed by increasing ionic strength, yielding /T less sensitive to pH. Fig. 4. Influence of pH on the plateau-value /T of adsorption isotherms of polyampholytes. At either side of the isoelectric point, i.e.p., the polyampholyte attains a net charge causing intra- and intermolecular electrostatic repulsion. As a result, the mass of adsorbed polyampholyte, that can be accommodated per unit area of the sorbent surface, decreases. Electrostatic interactions are suppressed by increasing ionic strength, yielding /T less sensitive to pH.
Figure 6.2 Electrostatic adsorption mechanism of Brunelle [1] (a) surface polarization as a function of pH (b) measurement of PZC of some oxides (equivalent to isoelectric point) by electrophoresis. Figure 6.2 Electrostatic adsorption mechanism of Brunelle [1] (a) surface polarization as a function of pH (b) measurement of PZC of some oxides (equivalent to isoelectric point) by electrophoresis.
The net charge at the hydrous oxide surface is established by the proton balance (adsorption of H or OH" and their complexes at the interface and specifically bound cations or anions. This charge can be determined from an alkalimetric-acidimetric titration curve and from a measurement of the extent of adsorption of specifically adsorbed ions. Specifically adsorbed cations (anions) increase (decrease) the pH of the point of zero charge (pzc) or the isoelectric point but lower (raise) the pH of the zero net proton condition (pznpc). [Pg.55]

Modifications of surface layers due to lattice substitution or adsorption of other ions present in solution may change the course of the reactions taking place at the solid/liquid interface even though the uptake may be undetectable by normal solution analytical techniques. Thus it has been shown by electrophoretic mobility measurements, (f>,7) that suspension of synthetic HAP in a solution saturated with respect to calcite displaces the isoelectric point almost 3 pH units to the value (pH = 10) found for calcite crystallites. In practice, therefore, the presence of "inert" ions may markedly influence the behavior of precipitated minerals with respect to their rates of crystallization, adsorption of foreign ions, and electrokinetic properties. [Pg.652]

The surface structure and characteristics (density and acidity) of the hydroxyl groups presented in Fig. 13.21 (using CrystalMaker 2.1.1 software) give very useful information to understand the reactivity of the surface of the particles, particularly when adsorption of another complex is desired to synthesize a bimetallic catalyst, or to control the interaction with an oxide carrier (the deposition step). The isoelectric point calculated with the model (5.9) is in fair agreement with the experimental value (4.3). [Pg.270]

As Smith (300) has shown by infrared spectroscopy, carboxylic acids are adsorbed either by hydrogen bonding of the carboxyl group or by proton transfer to the surface. Carboxylate absorptions were observed in the spectra. Very likely O " or OH ions acted as proton acceptors although no OH absorption bands could be detected after carboxylic acid adsorption. The isoelectric point of pure anatase is near pH 6.6 (305). [Pg.253]

Nonspecific ion adsorption, where these ions have no effect on the isoelectric point... [Pg.148]


See other pages where Adsorption isoelectric point is mentioned: [Pg.320]    [Pg.174]    [Pg.2061]    [Pg.526]    [Pg.250]    [Pg.349]    [Pg.455]    [Pg.708]    [Pg.79]    [Pg.117]    [Pg.118]    [Pg.119]    [Pg.124]    [Pg.427]    [Pg.432]    [Pg.449]    [Pg.451]    [Pg.456]    [Pg.389]    [Pg.44]    [Pg.592]    [Pg.926]    [Pg.151]    [Pg.105]    [Pg.7]    [Pg.458]    [Pg.184]    [Pg.465]    [Pg.122]    [Pg.123]    [Pg.159]    [Pg.112]    [Pg.656]    [Pg.96]    [Pg.236]    [Pg.136]   
See also in sourсe #XX -- [ Pg.398 , Pg.412 , Pg.413 ]




SEARCH



Isoelectric

Isoelectric point

© 2024 chempedia.info