Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adrenoceptors mechanisms

Wang, X., Wang, J., Takeda, S., Elimban, V., and Dhalla, N.S. 2002. Alterations of cardiac P-adrenoceptor mechanisms due to calcium depletion and repletion. Mol. Cell. Biochem. 232 63-73. [Pg.49]

Clonidine has also been found to exhibit several other pharmacologic properties that, in some cases, do not seem to be related to its a-adrenoceptor mechanism. Effectiveness in glaucoma is one that is. It is experimental, but may be a property shared by other a2-agonists. [Pg.447]

The cardiac effects of the calcium antagonists, ie, slowed rate (negative chronotropy) and decreased contractile force (negative inotropy), are prominent in isolated cardiac preparations. However, in the intact circulation, these effects may be masked by reflex compensatory adjustments to the hypotension that these agents produce. The negative inotropic activity of the calcium antagonists may be a problem in patients having heart failure, where contractility is already depressed, or in patients on concomitant -adrenoceptor blockers where reflex compensatory mechanisms are reduced. [Pg.126]

P-Adrenoceptor Blockers. There is no satisfactory mechanism to explain the antihypertensive activity of P-adrenoceptor blockers (see Table 1) in humans particularly after chronic treatment (228,231—233). Reductions in heart rate correlate well with decreases in blood pressure and this may be an important mechanism. Other proposed mechanisms include reduction in PRA, reduction in cardiac output, and a central action. However, pindolol produces an antihypertensive effect without lowering PRA. In long-term treatment, the cardiac output is restored despite the decrease in arterial blood pressure and total peripheral resistance. Atenolol (Table 1), which does not penetrate into the brain is an efficacious antihypertensive agent. In short-term treatment, the blood flow to most organs (except the brain) is reduced and the total peripheral resistance may increase. [Pg.141]

Causalgia is burning pain evoked by the activation of sympathetic efferent fibres. The likely mechanism underlying this syndrome involves ectopic expression of a-adrenoceptors on nociceptive afferents following peripheral injury or disease. [Pg.339]

The release of NO from the endothelium is induced by various chemical substances, including acetylcholine polypeptides such as substance P, bradykinin, and arginine vasopressin histamine ATP/ADP a2-adrenoceptor agonists thrombin and Ca2+ iono-phores. NO formed in response to mechanical stimuli like shear stress or transmural pressure plays an important role in maintaining basal blood flow. Endothelial NO causes vasodilatation, decreased... [Pg.857]

Taking ai-adrenoceptors as an example, several possible mechanisms have been suggested (see Starke 1987). The first rests on evidence that these autoreceptors are coupled to a Gi (like) protein so that binding of an a2-adrenoceptor agonist to the receptor inhibits the activity of adenylyl cyclase. This leads to a fall in the synthesis of the second messenger, cAMP, which is known to be a vital factor in many processes involved in exocytosis. In this way, activation of presynaptic a2-adrenoceptors could well affect processes ranging from the docking of vesicles at the active zone to the actual release process itself... [Pg.99]

Alternative mechanisms are equally likely. One possibility arises from evidence that activation of a2-adrenoceptors reduces Ca + influx this will have obvious effects on impulse-evoked exocytosis. In fact, the inhibition of release effected by a2-adrenoceptor agonists can be overcome by raising external Ca + concentration. Finally, an increase in K+ conductance has also been implicated this would hyperpolarise the nerve terminals and render them less likely to release transmitter on the arrival of a nerve impulse. Any, or all, of these processes could contribute to the feedback inhibition of transmitter release. Similar processes could explain the effects of activation of other types of auto-or heteroceptors. [Pg.99]

A logical conclusion from this work was that depression is caused by hyperresponsive )S-adrenoceptors. At first, this might seem to undermine Schildkraut s suggestion that depression is caused by a deficit in noradrenergic transmission. However, proliferation of receptors is the normal response to a deficit in transmitter release and so the opposite change, dowmegulation of jS-adrenoceptors by antidepressants, would follow an increase in the concentration of synaptic noradrenaline. This would be consistent with both their proposed mechanism of action and the monoamine theory for depression. [Pg.444]

Figure 3 Putative model for the mechanism by which biogenic amines stimulate CE secretion across the rabbit corneal epithelium. Epn = epinephrine Nep = norepinephrine Tim = Timolol Ser = serotonin Msg = methysergide Dop = dopamine Hal = haloperi-dol (E = (E-adrenoceptor AC = adenylate cyclase. The scheme is consistent with the observation that epithelial responsiveness to serotonin and dopamine can be blocked by their receptor antagonists haloperidol and methysergide, respectively, and by both timolol treatment and sympathectomy. The probable source of serotonin or dopamine is the sympathetic fibers that innervate the cornea. (From Ref. 284.)... Figure 3 Putative model for the mechanism by which biogenic amines stimulate CE secretion across the rabbit corneal epithelium. Epn = epinephrine Nep = norepinephrine Tim = Timolol Ser = serotonin Msg = methysergide Dop = dopamine Hal = haloperi-dol (E = (E-adrenoceptor AC = adenylate cyclase. The scheme is consistent with the observation that epithelial responsiveness to serotonin and dopamine can be blocked by their receptor antagonists haloperidol and methysergide, respectively, and by both timolol treatment and sympathectomy. The probable source of serotonin or dopamine is the sympathetic fibers that innervate the cornea. (From Ref. 284.)...
The renaissance of the Biginelli MCR can be attributed to the obtained pyrimidine derivatives, which show remarkable pharmacological activity. A broad range of effects, including antiviral, antitumor, antibacterial, anti-inflammatory as well as antihypertensive activities has been ascribed to these partly reduced pyrimidine derivatives [96], such as 9-117 and 9-118 (antihypertensive agents) [97] and 9-119 (ala-adrenoceptor-selective antagonist) [98] (Scheme 9.24). Recently, the scope of this pharmacophore has been further increased by the identification of the 4-(3-hydroxyphenyl)-pyrimidin-2-thione derivative 9-120 known as monastrol [98], a novel cell-permeable lead molecule for the development of new anticancer drugs. Monastrol appears specifically to affect cell division (mitosis) by a new mechanism,... [Pg.559]


See other pages where Adrenoceptors mechanisms is mentioned: [Pg.103]    [Pg.1152]    [Pg.1154]    [Pg.165]    [Pg.103]    [Pg.1152]    [Pg.1154]    [Pg.165]    [Pg.240]    [Pg.464]    [Pg.465]    [Pg.115]    [Pg.126]    [Pg.141]    [Pg.106]    [Pg.106]    [Pg.273]    [Pg.402]    [Pg.16]    [Pg.42]    [Pg.74]    [Pg.75]    [Pg.98]    [Pg.174]    [Pg.179]    [Pg.516]    [Pg.803]    [Pg.64]    [Pg.72]    [Pg.73]    [Pg.176]    [Pg.159]    [Pg.159]    [Pg.174]    [Pg.470]    [Pg.478]    [Pg.385]    [Pg.81]    [Pg.157]    [Pg.540]    [Pg.96]    [Pg.350]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



Adrenoceptor

Adrenoceptors

© 2024 chempedia.info