Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adenylate kinase reaction, adenosine triphosphate

Adenosine triphosphate (ATP) is one of the most important cofactors involved in many of the synthetic reactions going on within the cell. Its recent large scale in vitro enzymatic synthesis from adenosine and acetylphosphate is of particular interest. Three enzymes immobilized in polyacrylamide gel were used adenosine kinase, adenylate kinase and acetate kinase (lip. ... [Pg.205]

In the preceding sections the conversion of purines and purine nucleosides to purine nucleoside monophosphates has been discussed. The monophosphates of adenosine and guanosine must be converted to their di- and triphosphates for polymerization to RNA, for reduction to 2 -deoxyribonucleoside diphosphates, and for the many other reactions in which they take part. Adenosine triphosphate is produced by oxidative phosphorylation and by transfer of phosphate from 1,3-diphosphoglycerate and phosphopyruvate to adenosine diphosphate. A series of transphosphorylations distributes phosphate from adenosine triphosphate to all of the other nucleotides. Two classes of enzymes, termed nucleoside mono-phosphokinases and nucleoside diphosphokinases, catalyse the formation of the nucleoside di- and triphosphates by the transfer of the terminal phosphoryl group from adenosine triphosphate. Muscle adenylate kinase (myokinase)... [Pg.80]

Figure 8 Simplified diagram of a signaling cascade that involves NE, BDNF, and CREB after NE acts on the postsynaptic fi-noradrenergic receptor. NE couples to a G protein (Gas), which stimulates the production of cAMP from adenosine triphosphate (ATP). This reaction is catalyzed by adenylate cyclase (AC). cAMP activates protein kinase A (PKA). Inside the cell, PKA phosphorylates (P) the CREB protein, which binds upstream from specific regions of genes and regulates their expression. BDNF is one target of cAMP signaling pathways in the brain. CRE, cyclic AMP regulatory element ER, endoplasmic reticulum, [reprinted from Reference 76 with permission of the author and the publisher, Canadian Medical Association]. Figure 8 Simplified diagram of a signaling cascade that involves NE, BDNF, and CREB after NE acts on the postsynaptic fi-noradrenergic receptor. NE couples to a G protein (Gas), which stimulates the production of cAMP from adenosine triphosphate (ATP). This reaction is catalyzed by adenylate cyclase (AC). cAMP activates protein kinase A (PKA). Inside the cell, PKA phosphorylates (P) the CREB protein, which binds upstream from specific regions of genes and regulates their expression. BDNF is one target of cAMP signaling pathways in the brain. CRE, cyclic AMP regulatory element ER, endoplasmic reticulum, [reprinted from Reference 76 with permission of the author and the publisher, Canadian Medical Association].
These reactions are catalyzed by the enzymes nucleoside monophos-phokinase and nucleoside diphosphokinase, respectively. Note that these reactions are reversible, so that ATP may be synthesized at the expense of GTP or another nucleoside triphosphate. The precursor ADP (adenosine diphosphate) may also be synthesized from the reaction of AMP with ATP, catalyzed by the enzyme adenylate kinase ... [Pg.122]

The ready reversibility of the kinases and their abundance in cells has the result that all of the free nucleoside phosphates in a cell reflect the relative amounts of the adenosine phosphates in each of the three levels of phosphorylation. Because the adenosine phosphates are primarily involved in energy metabolism, the energy status of the cell is reflected in the relative amounts of ATP, ADP, and adenylate. Through the very facile transphosphorylation reactions, other nucleoside phosphates become similarly distributed among the three levels of phosphorylation perturbations in energy metabolism, such as those caused by substrate deprivation or by anoxia, cause parallel shifts in the relative amounts of the mono-, di-, and triphosphates in all of the nucleotide families. [Pg.59]

Bios5mthetic pathways of naturally occurring cytokinins are illustrated in Fig. 29.5. The first step of cytokinin biosynthesis is the formation of A -(A -isopentenyl) adenine nucleotides catalyzed by adenylate isopentenyltransferase (EC 2.5.1.27). In higher plants, A -(A -isopentenyl)adenine riboside 5 -triphosphate or A -(A -isopentenyl)adenine riboside 5 -diphosphate are formed preferentially. In Arabidopsis, A -(A -isopentenyl)adenine nucleotides are converted into fraws-zeatin nucleotides by cytochrome P450 monooxygenases. Bioactive cytokinins are base forms. Cytokinin nucleotides are converted to nucleobases by 5 -nucleotidase and nucleosidase as shown in the conventional purine nucleotide catabolism pathway. However, a novel enzyme, cytokinin nucleoside 5 -monophosphate phosphoribo-hydrolase, named LOG, has recently been identified. Therefore, it is likely that at least two pathways convert inactive nucleotide forms of cytokinin to the active freebase forms that occur in plants [27, 42]. The reverse reactions, the conversion of the active to inactive structures, seem to be catalyzed by adenine phosphoiibosyl-transferase [43] and/or adenosine kinase [44]. In addition, biosynthesis of c/s-zeatin from tRNAs in plants has been demonstrated using Arabidopsis mutants with defective tRNA isopentenyltransferases [45]. [Pg.963]


See other pages where Adenylate kinase reaction, adenosine triphosphate is mentioned: [Pg.172]    [Pg.116]    [Pg.114]   


SEARCH



Adenosin triphosphate

Adenosine reactions

Adenosine triphosphate

Adenosine triphosphate reactions

Adenylate

Adenylate kinase

Adenylate kinase reaction

Adenylation

Adenylic kinase

Kinases adenylate kinase

© 2024 chempedia.info