Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Adenosine triphosphate: nucleoside monophosphate kinases

In the preceding sections the conversion of purines and purine nucleosides to purine nucleoside monophosphates has been discussed. The monophosphates of adenosine and guanosine must be converted to their di- and triphosphates for polymerization to RNA, for reduction to 2 -deoxyribonucleoside diphosphates, and for the many other reactions in which they take part. Adenosine triphosphate is produced by oxidative phosphorylation and by transfer of phosphate from 1,3-diphosphoglycerate and phosphopyruvate to adenosine diphosphate. A series of transphosphorylations distributes phosphate from adenosine triphosphate to all of the other nucleotides. Two classes of enzymes, termed nucleoside mono-phosphokinases and nucleoside diphosphokinases, catalyse the formation of the nucleoside di- and triphosphates by the transfer of the terminal phosphoryl group from adenosine triphosphate. Muscle adenylate kinase (myokinase)... [Pg.80]

Strominger, J,L. Heppel, L.A. Maxwell, E.S. Nucleoside monophosphate kinases. Transphosphorilation between adenosine triphosphate and nucleoside monophosphates. Biochim. Biophys. Acta, 32, 412-421 (1959)... [Pg.519]

Scheme L Synthesis of a2,64inked sialyl-N-acetyllactosamine using a one-pot multi-enzyme system with in situ regeneration of CMP-Neu5Ac. Abbreviations for enzymes CSS, CMP-sialic acid synthetase NMK, nucleoside monophosphate kinase PK, pyruvate kinase PPase, pyrophosphatase. Abbreviations for compounds PEP, phosphoenolpyruvate ADP, adenosine 5 -diphosphate ATP, adenosine 5 -triphosphate CMP, cytidine 5-monophosphate CDP, cytidine 5 -diphosphate CTP, cytidine 5-triphosphate LacNAc, N-acetyllactosamine NeuSAc, N-acetylneuraminic acid PPi, inorganic pyrophosphate. Scheme L Synthesis of a2,64inked sialyl-N-acetyllactosamine using a one-pot multi-enzyme system with in situ regeneration of CMP-Neu5Ac. Abbreviations for enzymes CSS, CMP-sialic acid synthetase NMK, nucleoside monophosphate kinase PK, pyruvate kinase PPase, pyrophosphatase. Abbreviations for compounds PEP, phosphoenolpyruvate ADP, adenosine 5 -diphosphate ATP, adenosine 5 -triphosphate CMP, cytidine 5-monophosphate CDP, cytidine 5 -diphosphate CTP, cytidine 5-triphosphate LacNAc, N-acetyllactosamine NeuSAc, N-acetylneuraminic acid PPi, inorganic pyrophosphate.
Adenylate kinase, which in vivo catalyzes the equilibrium between adenosine mono-, di- and triphosphates, has been used extensively in the production of ATP (27, 41). Although the enzyme has a broad substrate specificity for nucleoside di- and triphosphates, the specificity for monophosphates is much more restrictive. Nonetheless, the specificity is... [Pg.13]

Bios5mthetic pathways of naturally occurring cytokinins are illustrated in Fig. 29.5. The first step of cytokinin biosynthesis is the formation of A -(A -isopentenyl) adenine nucleotides catalyzed by adenylate isopentenyltransferase (EC 2.5.1.27). In higher plants, A -(A -isopentenyl)adenine riboside 5 -triphosphate or A -(A -isopentenyl)adenine riboside 5 -diphosphate are formed preferentially. In Arabidopsis, A -(A -isopentenyl)adenine nucleotides are converted into fraws-zeatin nucleotides by cytochrome P450 monooxygenases. Bioactive cytokinins are base forms. Cytokinin nucleotides are converted to nucleobases by 5 -nucleotidase and nucleosidase as shown in the conventional purine nucleotide catabolism pathway. However, a novel enzyme, cytokinin nucleoside 5 -monophosphate phosphoribo-hydrolase, named LOG, has recently been identified. Therefore, it is likely that at least two pathways convert inactive nucleotide forms of cytokinin to the active freebase forms that occur in plants [27, 42]. The reverse reactions, the conversion of the active to inactive structures, seem to be catalyzed by adenine phosphoiibosyl-transferase [43] and/or adenosine kinase [44]. In addition, biosynthesis of c/s-zeatin from tRNAs in plants has been demonstrated using Arabidopsis mutants with defective tRNA isopentenyltransferases [45]. [Pg.963]


See other pages where Adenosine triphosphate: nucleoside monophosphate kinases is mentioned: [Pg.182]    [Pg.905]    [Pg.189]    [Pg.171]    [Pg.15]    [Pg.728]    [Pg.265]   
See also in sourсe #XX -- [ Pg.60 , Pg.61 , Pg.62 ]




SEARCH



Adenosin triphosphate

Adenosine 5 monophosphate

Adenosine triphosphate

Nucleoside kinases adenosine kinase

Nucleoside monophosphate

Nucleoside monophosphate kinase

Nucleoside monophosphate kinase monophosphates

Nucleoside monophosphate kinase triphosphates

Nucleoside monophosphates

Nucleoside triphosphate

Nucleoside triphosphates

© 2024 chempedia.info