Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatic acylation acyl halides

Acyl halides, both aliphatic and aromatic, react with the sodium derivative, but the product depends largely on the solvent used. Thus acetyl chloride reacts with the sodium derivative (E) suspended in ether to give mainly the C-derivative (t) and in pyridine solution to give chiefly the O-derivative (2). These isomeric compounds can be readily distinguished, because the C-derivative (1) can still by enolisation act as a weak acid and is therefore... [Pg.270]

Aromatic acyl halides and sulfonyl halides undergo oxidative addition, followed by facile elimination of CO and SO2 to form arylpalladium complexes. Benzenediazonium salts are the most reactive source of arylpalladium complexes. [Pg.127]

Because acylation of an aromatic ring can be accomplished without rearrangement it is frequently used as the first step m a procedure for the alkylation of aromatic compounds by acylation-reduction As we saw m Section 12 6 Friedel-Crafts alkylation of ben zene with primary alkyl halides normally yields products having rearranged alkyl groups as substituents When a compound of the type ArCH2R is desired a two step sequence IS used m which the first step is a Friedel-Crafts acylation... [Pg.486]

Appaiendy a molai equivalent of catalyst (AlCl ) combines with the acyl halide, giving a 1 1 addition compound, which then acts as the active acylating agent. Reaction with aromatics gives the AlCl complex of the product ketone hberating HX ... [Pg.557]

FRIEDEL - CRAFTS Alkylation-Acylation Alkylation or acylation ol aromatic compounds by means of alryl halides, alcohols.alkenes, acyl halides in the presence of Lewis acids... [Pg.131]

Friedel-Crafts acylation usually involves the reaction of an acyl halide, a Lewis acid catalyst, and the aromatic substrate. Several species may function as the active electrophile, depending on the reactivity of the aromatic compound. For activated aromatics, the electrophile can be a discrete positively charged acylium ion or the complex formed... [Pg.583]

Triflates of aluminum, gallium and boron, which are readily available by the reaction of the corresponding chlorides with triflic acid, are effective Fnedel-Crafis catalysis for alkylation and acylation of aromatic compounds [119, 120] Thus alkylation of toluene with various alkyl halides m the presence of these catalysts proceeds rapidly at room temperature 111 methylene chloride or ni-tromethane Favorable properties of the triflates in comparison with the correspond mg fluorides or chlorides are considerably decreased volatility and higher catalytic activity [120]... [Pg.964]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

Friedel-Crafts acylation reactions usually involve the interaction of an aromatic compound with an acyl halide or anhydride in the presence of a catalyst, to form a carbon-carbon bond [74, 75]. As the product of an acylation reaction is less reactive than its starting material, monoacylation usually occurs. The catalyst in the reaction is not a true catalyst, as it is often (but not always) required in stoichiometric quantities. For Friedel-Crafts acylation reactions in chloroaluminate(III) ionic liquids or molten salts, the ketone product of an acylation reaction forms a strong complex with the ionic liquid, and separation of the product from the ionic liquid can be extremely difficult. The products are usually isolated by quenching the ionic liquid in water. Current research is moving towards finding genuine catalysts for this reaction, some of which are described in this section. [Pg.203]

Olivier and Berger335, who measured the first-order rate coefficients for the aluminium chloride-catalysed reaction of 4-nitroben2yl chloride with excess aromatic (solvent) at 30 °C and obtained the rate coefficients (lO5/ ) PhCI, 1.40 PhH, 7.50 PhMe, 17.5. These results demonstrated the electrophilic nature of the reaction and also the unselective nature of the electrophile which has been confirmed many times since. That the electrophile in these reactions is not the simple and intuitively expected free carbonium ion was indicated by the observation by Calloway that the reactivity of alkyl halides was in the order RF > RC1 > RBr > RI, which is the reverse of that for acylation by acyl halides336. The low selectivity (and high steric hindrance) of the reaction was further demonstrated by Condon337 who measured the relative rates at 40 °C, by the competition method, of isopropylation of toluene and isopropylbenzene with propene catalyzed by boron trifluoride etherate (or aluminium chloride) these were as follows PhMe, 2.09 (1.10) PhEt, 1.73 (1.81) Ph-iPr, (1.69) Ph-tBu, 1.23 (1.40). The isomer distribution in the reactions337,338 yielded partial rate factors of 2.37 /mMe, 1.80 /pMe, 4.72 /, 0.35 / , 2.2 / Pr, 2.55337 339. [Pg.140]

Brown and Jensen395 suggested that the rate equation (194) for the reaction of benzene with excess benzoyl chloride could be interpreted according to the mechanisms given by the reactions (201) and (202), (203) and (204) and (205) and (206) which refer to nucleophilic attack of the aromatic upon the polarised acyl halide-catalyst complex, upon the free acylium ion, and upon an ion pair derived from the acyl halide-catalyst complex, viz. [Pg.174]

Diaryl sulfones can be formed by treatment of aromatic compounds with aryl sulfonyl chlorides and a Friedel-Crafts catalyst. This reaction is analogous to Friedel-Crafts acylation with carboxylic acid halides (11-14). In a better procedure, the aromatic compound is treated with an aryl sulfonic acid and P2O5 in polypho-sphoric acid. Still another method uses an arylsulfonic trifluoromethanesulfonic anhydride (ArS020S02CF3) (generated in situ from ArS02Br and CF3S03Ag) without a catalyst. ... [Pg.704]

Wilkinson s catalyst has also been reported to decarbonylate aromatic acyl halides at 180°C (ArCOX ArX). This reaction has been carried out with acyl iodides, bromides, and chlorides. Aliphatic acyl halides that lack an a hydrogen also give this reaction, but if an a hydrogen is present, elimination takes place instead (17-16). Aromatic acyl cyanides give aryl cyanides (ArCOCN—> ArCN). Aromatic acyl chlorides and cyanides can also be decarbonylated with palladium catalysts. °... [Pg.944]

In a similar reaction, aromatic acyl halides are converted to amines in one laboratory step by treatment with hydroxylamine-O-sulfonic acid. " ... [Pg.1413]

Coupling of aromatic acyl halides, with decarbonylation... [Pg.1658]

Ferrocene behaves in many respects like an aromatic electron-rich organic compound which is activated toward electrophilic reactions.In Friedel-Crafts type acylation of aromatic compounds with acyl halides, ferrocene is lO times more reactive than benzene and gives yields over 80%. However, ferrocene is different from benzene in respect to reactivity and yields in the Friedel-Crafts alkylation with alkyl halides or olefins. The yields of ferrocene alkylation are often very low. and the separations of the polysubstituted byproducts are tedious. [Pg.155]


See other pages where Aromatic acylation acyl halides is mentioned: [Pg.523]    [Pg.343]    [Pg.182]    [Pg.231]    [Pg.725]    [Pg.887]    [Pg.953]    [Pg.580]    [Pg.1307]    [Pg.48]    [Pg.172]    [Pg.173]    [Pg.173]    [Pg.507]    [Pg.702]    [Pg.708]    [Pg.735]    [Pg.183]    [Pg.725]    [Pg.95]   
See also in sourсe #XX -- [ Pg.137 ]




SEARCH



Acyl halides bimolecular aromatic

Acyl halides with aromatic rings

Acylation, aromatic

Aromatic acyl halides

Aromatic compounds, with acyl halides

Aromatic halides

Aromatics acylation

© 2024 chempedia.info