Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl-DMAP chloride, acylation

Acyl-DMAP chloride, acylation of nucleophiles, 242f Acylatlng agents, polyneric, types, 235-238... [Pg.285]

Figure 3, Acylation of nucleophiles by polymer-bound 1-acyl-DMAP chloride. Figure 3, Acylation of nucleophiles by polymer-bound 1-acyl-DMAP chloride.
As a catalyst for ester and amide formation from acyl chlorides or anhydrides, 4-(di-methylamino)pyridine has been recommended (DMAP G. Hdfle, 1978). In the presence of this agent highly hindered hydroxyl groups, e.g. of steroids and carbohydrates, are acylated under mild conditions, which is difficult to achieve with other catalysts. [Pg.144]

Pyridine is more nucleophilic than an alcohol toward the carbonyl center of an acyl chloride. The product that results, an acylpyridinium ion, is, in turn, more reactive toward an alcohol than the original acyl chloride. The conditions required for nucleophilic catalysis therefore exist, and acylation of the alcohol by acyl chloride is faster in the presence of pyridine than in its absence. Among the evidence that supports this mechanism is spectroscopic observation of the acetylpyridinium ion. An even more effective catalyst is 4-dimeftiyIaminopyridine (DMAP), which functions in the same wsy but is more reactive because of the electron-donating dimethylamino substituent. ... [Pg.485]

The inclusion of DMAP to the extent of 5-20 mol % in acylations by acid anhydrides and acyl chlorides increases acylation rates by up to four orders of magnitude and permits successful acylation of tertiary and other hindered alcohols. The reagent combination of an acid anhydride with MgBr2 and a hindered tertiary amine, e.g., ( -Pr)2NC2H5 or 1,2,2,6,6,-pentamethylpiperidine, gives an even more reactive acylation system, which is useful for hindered and sensitive alcohols.105... [Pg.244]

Use of 2,4,6-trichlorobenzoyl chloride, Et3N, and DMAP, known as the Yamaguchi method,128 is frequently used to effect macrolactonization. The reaction is believed to involve formation of the mixed anhydride with the aroyl chloride, which then forms an acyl pyridinium ion on reaction with DMAP.129... [Pg.249]

Another example has been provided by Ito et al., who described the use of methanofullerene derivatives as powerful and stable precursors for glycofullerenes.217 Their study was based on the use of [60]fullerenoacetyl chloride (227), obtained from the ferf-butyl [60]fullerenoacetate derivative 226, which had been prepared in 56% yield by treatment of corresponding stabilized sulfonium ylides 225 with C6o-218 Subsequent transformation with p-TsOH in toluene gave [60]full-erenoacetic acid, which was directly converted into the corresponding acyl chloride 227 by using thionyl chloride. Standard ester formation with methyl 2,3,4-tetra-O-benzyI -/<-d-gl ucopyranoside (228) and 4-(dimethylamino)pyridine (DMAP) afforded the desired hybrid derivative 229 in 66% yield. [Pg.244]

Ethyl 3-oxoalkanoates when not commercially available can be prepared by the acylation of tert-butyl ethyl malonate with an appropriate acid chloride by way of the magnesium enolate derivative. Hydrolysis and decarboxylation in acid solution yields the desired 3-oxo esters [59]. 3-Keto esters can also be prepared in excellent yields either from 2-alkanone by condensation with ethyl chloroformate by means of lithium diisopropylamide (LDA) [60] or from ethyl hydrogen malonate and alkanoyl chloride usingbutyllithium [61]. Alternatively P-keto esters have also been prepared by the alcoholysis of 5-acylated Mel-drum s acid (2,2-dimethyl-l,3-dioxane-4,6-dione). The latter are prepared in almost quantitative yield by the condensation of Meldrum s acid either with an appropriate fatty acid in the presence of DCCI and DMAP [62] or with an acid chloride in the presence of pyridine [62] (Scheme 7). [Pg.306]

The inclusion of DMAP to the extent of 5-20 mol% in acylations by acid anhydrides and acyl chlorides increases acylation rates by up to four orders of magnitude and permits successful acylation of tertiary and other hindered alcohols. [Pg.167]

An early synthesis of A5-palmitoy]-.S -[2,3-bis(palmitoyloxy)propyl]cysteine employed cysteine methyl ester, however, this leads to difficulties in the saponification step of the tri-palmitoylated residue. 96 The optimized procedure, in which the cystine di-fert-butyl ester is used, 90 is outlined in Scheme 6 after N-acylation with palmitoyl chloride, the ester is reduced to the cysteine derivative for S-alkylation with l-bromopropane-2,3-diol to yield chirally defined isomers if optically pure bromo derivatives are used. Esterification of the hydroxy groups is best carried out with a 1.25-fold excess of palmitic acid, DCC, and DMAP. The use of a larger excess of palmitoyl chloride is not recommended due to purification problems. The diastereomeric mixture can be separated by silica gel chromatography using CH2Cl2/EtOAc (20 1) as eluent and the configuration was assigned by comparison with an optically pure sample obtained with 2R)- -bromopropane-2,3-diol. [Pg.346]

Dihydroartemisinin 29a and anhydrides or acyl chlorides in the presence of DMAP, pyridine, or triethylamine gave the a-esters 139 the base thus has no effects on the stereochemistry of the acyl substituent (Table 10) <2002EJ0113>. [Pg.870]

Much the same activity is retained when the nitrogen atoms in the heterocyclic nucleus are shifted around. The convergent scheme to this related compound starts with the acylation of alanine (35-1) with butyryl chloride (35-2). The thus-produced amide (35-3) is then again acylated, this time with the half-acid chloride from ethyl oxalate in the presence of DMAP and pyridine to afford the intermediate (35-4). In the second arm of the scheme, the benzonitrile (35-5) is reacted with the aluminate (35-6), itself prepared from trimethyl aluminum and ammonium chloride, to form the imidate (35-7). Treatment of this intermediate with hydrazine leads to the replacement of one of the imidate nitrogen atoms by the reagent by an addition-elimination sequence to form (35-8). Condensation of this product with (35-4) leads to the formation of the triazine (35-9). Phosphorus oxychloride then closes the second ring... [Pg.599]

Tertiary aliphatic alcohol linkers have only occasionally been used in solid-phase organic synthesis [73], This might be because of the vigorous conditions required for their acylation. Esterification of resin-bound linker 4 with /V-Fmoc-prolinc [72,74] could not be achieved with the symmetric anhydride in the presence of DMAP (20 h), but required the use of /V-Fmoc-prolyl chloride (10-40% pyridine in DCM, 25 °C, 10-20 h [72]). A further problem with these linkers is that they can undergo elimination, a side reaction that cannot occur with benzyl or trityl linkers. Hence, for most applications in which a nucleophile-resistant linker for carboxylic acids is needed, 2-chlorotri-tyl- or 4-acyltrityl esters will probably be a better choice than ferf-alkyl esters. [Pg.45]

Standard solid-phase peptide synthesis requires the first (C-terminal) amino acid to be esterified with a polymeric alcohol. Partial racemization can occur during the esterification of N-protected amino acids with Wang resin or hydroxymethyl polystyrene [200,201]. /V-Fmoc amino acids are particularly problematic because the bases required to catalyze the acylation of alcohols can also lead to deprotection. A comparative study of various esterification methods for the attachment of Fmoc amino acids to Wang resin [202] showed that the highest loadings with minimal racemization can be achieved under Mitsunobu conditions or by activation with 2,6-dichloroben-zoyl chloride (Experimental Procedure 13.5). iV-Fmoc amino acid fluorides in the presence of DMAP also proved suitable for the racemization-free esterification of Wang resin (Entry 1, Table 13.13). The most extensive racemization was observed when DMF or THF was used as solvent, whereas little or no racemization occurred in toluene or DCM [203]. [Pg.349]

Acyl chlorides. Acyl chlorides are formed rapidly by reaction of carboxylic acids with SOCl2 and pyridine in CH2C12 at 25°. The dicyclohexylammonium salts of carboxylic acids react particularly rapidly (ca. 1 minute). The acid chlorides prepared in situ in this way react with amines in the presence of DMAP or DBU to form amides in >85% yield. This SOCl2-Py method is also useful for peptide synthesis with slight racemization. [Pg.297]

A related series of 5-substituted-2-amino-oxadiazole compounds have also been prepared in a one-pot procedure using a microwave-assisted cyclisation procedure (Scheme 6.26)164. Rapid preparation of the pre-requisite ureas from the mono acyl hydrazines and various isocyanates (or the isothiocyanate) was easily achieved by simple mixing. The resulting products were then cyclo dehydrated by one of the two procedures either by the addition of polymer-supported DMAP and tosyl chloride or alternatively with an immobilised carbodiimide and catalytic sulphonic acid. Purity in most cases was excellent after only filtration through a small plug of silica but an SCX-2 cartridge (sulphonic acid functionalised - catch and release) could be used in the cases where reactions required additional purification. [Pg.159]

The alcohol 177 was converted to starting substrates oxazolidinone 178 by acylation followed by reduction of the azide function along with cyclization. Oxazolidinone 178 was protected with f-butylpyrocarbonate-4-(dimethylamino) pyridine (DMAP) and triethylamine, which was further subjected to reductive cleavage of the benzyl ester unit to afford carboxylic acid 179. The treatment of 179 with solution of l-chloro-/V./V,2-trimethyl-1-propenv I airline resulted in the easy formation of the corresponding acid chloride which on reaction with imine in the presence of triethylamine provided the stereoselective formation of spiro-p-lactam 180. [Pg.81]

Similarly, treatment of 1,2-diazetines 112 with acyl chloride or anhydride in the presence of DMAP yields acylated 1,2-diazetidines 114 <2006S514> which upon heating give ring-expanded products 115 (Scheme 12). [Pg.657]

In addition to the availability issues of the oxazolidinone unit, there has been some reluctance to scale up the reactions because formation of the V-acyl derivatives usually uses n-butyl lithium as a base. This problem can be circumvented by the use of an acid chloride or anhydride (symmetric or mixed) with triethylamine as the base in the presence of a catalytic amount of DMAP (4-dimethylamino pyridine). The reaction is general and provides good yields even with a,P-unsatur-ated acid derivatives (Scheme 2.4).12... [Pg.16]

Initial efforts to prepare benzoic acid 28 from methyl or ethyl 4-aminobenzoate and biphenyl-2-carboxylic acid (27) afforded poor yields of 28 (48% and 7%, respectively). However, acylation of 4-aminobenzoic acid with biphenyl-2-carbonyl chloride was found to provide 28 in excellent yield (95%) when DMAP was employed as a base. Selective acylation of the anilinic nitrogen of 26 with benzoic acid 28 was accomplished in analogy with the first-generation process synthesis by conversion of 28 to the corresponding acid chloride (SOCl2, CH3CN) followed by acylation of 26 in acetonitrile. Subsequent addition of ethanolic hydrogen chloride to the reaction mixture resulted in the precipitation of conivaptan HCl (1), which was isolated in 90% yield. [Pg.188]


See other pages where Acyl-DMAP chloride, acylation is mentioned: [Pg.517]    [Pg.772]    [Pg.51]    [Pg.249]    [Pg.265]    [Pg.178]    [Pg.101]    [Pg.132]    [Pg.83]    [Pg.57]    [Pg.267]    [Pg.106]    [Pg.180]    [Pg.612]    [Pg.349]    [Pg.245]    [Pg.380]    [Pg.83]    [Pg.155]    [Pg.63]    [Pg.6]    [Pg.231]    [Pg.108]    [Pg.266]    [Pg.335]    [Pg.46]    [Pg.42]    [Pg.58]    [Pg.134]   


SEARCH



Acyl chlorides

Acyl-DMAP chloride, acylation nucleophiles

Acylation acyl chlorides

DMAP

DMAPS

© 2024 chempedia.info