Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acyl complexes bonding

Insertion of SO2 into the Fe—C bond in FelPorfCHi was first reported in 1982, giving the sulfinato complexes Fe(Por)S02CH2, which are moderately air stable but can be further oxidized by O2 to give the sulfonato complexes FelPorfSOiCH. " Alkyliron(Ill) porphyrins insert CO to give the acyl complexes Fe(Por)C(0)R. For example, Fe(TPP)C(0)-n-Bu was formed either by this method or by the reaction of I Fe(TPP) r with ClC(0)-/ -Bu, and was characterized by an X-ray crystal structure... [Pg.257]

Iron(II) alkyl anions fFe(Por)R (R = Me, t-Bu) do not insert CO directly, but do upon one-electron oxidation to Fe(Por)R to give the acyl species Fe(Por)C(0)R, which can in turn be reduced to the iron(II) acyl Fe(Por)C(0)R]. This process competes with homolysis of Fe(Por)R, and the resulting iron(II) porphyrin is stabilized by formation of the carbonyl complex Fe(Por)(CO). Benzyl and phenyl iron(III) complexes do not insert CO, with the former undergoing decomposition and the latter forming a six-coordinate adduct, [Fe(Por)(Ph)(CO) upon reduction to iron(ll). The failure of Fe(Por)Ph to insert CO was attributed to the stronger Fe—C bond in the aryl complexes. The electrochemistry of the iron(lll) acyl complexes Fe(Por)C(0)R was investigated as part of this study, and showed two reversible reductions (to Fe(ll) and Fe(l) acyl complexes, formally) and one irreversible oxidation process."" ... [Pg.258]

The insertion of a carbonyl group into a metal-alkyl or metal-aryl bond, and the reverse reaction involving decarbonylation of an acyl complex, have been studied from both the synthetic and mechanistic points of view. The mechanism proposed for this type of reaction seems well established and is... [Pg.28]

Starting from 63, the carbonylation may proceed via coordination and insertion of CO into the vinyl-C-Pd bond to provide an a,P-unsaturated acyl complex. This complex reacts with (ArY) 2, and subsequently the C-Y bond is formed by reductive elimination to give 64 (Scheme 7-14). Because the compound 64 could be directly converted into the corresponding enal 65 by the Pd-catalyzed reduction with BujSnH, this sequence is synthetically equivalent to the regio- and stereoselective thioformy-lation and selenoformylation of alkynes (Eq. 7.49) [53, 54]. [Pg.235]

Complex (5) undergoes methyl migration after oxidative addition of CH3I to afford the acyl complex (6) containing two Rh—O bonds. Heating (6) in the presence of CO results in the reductive elimination of Acl, which upon hydrolysis is transformed to AcOH.12... [Pg.144]

This type of side-on bending, which has been established by X-ray crystallographic methods for the related acyl complexes (r 5-C5H5)2Zr(COMe)Me (38) and (T>5-C5H5)2Ti(COMe)Cl (39), could overcome the thermodynamic objection, previously discussed, against the formation of a normal, linearly bonded formyl by CO insertion into a metal-hydride bond. Thermochemical data obtained from alcoholysis of zirconium tetralkyl species show that the mean bond energy of Zr—O is 50 kcal/mole greater than that of Zr—C (40). [Pg.71]

In view of the fact that early transition metal alkyls insert CO under very mild conditions (2, 5.) we chose to examine the reactions of electron-rich metal hydrides ( ) with the resultant dihapto acyl complexes. Such acyls obviously benefit from reduction of the CO bond order from three (in OO) to two. More significantly, the dihapto binding mode will significantly enhance the electrophilic character of the acyl carbon. [Pg.43]

Carbon monoxide rapidly inserts into the carbon—zirconium bond of alkyl- and alkenyl-zirconocene chlorides at low temperature with retention of configuration at carbon to give acylzirconocene chlorides 17 (Scheme 3.5). Acylzirconocene chlorides have found utility in synthesis, as described elsewhere in this volume [17]. Lewis acid catalyzed additions to enones, aldehydes, and imines, yielding a-keto allylic alcohols, a-hydroxy ketones, and a-amino ketones, respectively [18], and palladium-catalyzed addition to alkyl/aryl halides and a,[5-ynones [19] are examples. The acyl complex 18 formed by the insertion of carbon monoxide into dialkyl, alkylaryl, or diaryl zirconocenes may rearrange to a r 2-ketone complex 19 either thermally (particularly when R1 = R2 = Ph) or on addition of a Lewis acid [5,20,21]. The rearrangement proceeds through the less stable... [Pg.88]

In the alkoxycarbonylation, the hydride mechanism initiates through the olefin insertion into a Pd - H bond, followed by the insertion of CO into the resulting Pd-alkyl bond with formation of an acyl intermediate, which undergoes nucleophilic attack of the alkanol to give the ester and the Pd - H+ species, which initiates the next catalytic cycle [35,40,57,118]. Alternatively, it has been proposed that a ketene intermediate forms from the acyl complex via /3-hydride elimination, followed by rapid addition of the alcohol [119]. In principle the alkyl intermediate may form also by protonation of the olefin coordinated to a Pd(0) complex [120,121]. [Pg.155]

A further method for preparing acyl complexes consists in the treatment of alkyl complexes containing at least one carbonyl ligand with a strong ligand [44,105,106], Thereby 1,1-insertion of the carbonyl group into the metal-carbon bond can... [Pg.19]

Coenzyme A (see also p. 106) is a nucleotide with a complex structure (see p. 80). It serves to activate residues of carboxylic acids (acyl residues). Bonding of the carboxy group of the carboxylic acid with the thiol group of the coenzyme creates a thioester bond (-S-CO-R see p. 10) in which the acyl residue has a high chemical potential. It can therefore be transferred to other molecules in exergonic reactions. This fact plays an important role in lipid metabolism in particular (see pp. 162ff), as well as in two reactions of the tricarboxylic acid cycle (see p. 136). [Pg.12]

In the process of carbonyl insertion the 1,1 migratory insertion of the coordinated CO ligand into the metal-carbon bond results in the formation of a metal-acyl complex (Figure 1-7). This process, as nearly all elementary steps discussed so far, is reversible, but even when using atmospheric CO pressure the equilibrium is mostly shifted towards insertion. In the process of insertion a vacant coordination site is also produced on the metal, where further reagents might be attached. Of the metals covered in this book palladium is by far the most frequently utilized in such transformations. [Pg.11]

The oxidative addition is quite general with alkyl, allyl, benzyl, vinyl, and aryl halides as well as with acyl halides to afford the palladium (II) complex VII. The frans-bis( triphenylphosphine )alkylpalladium halides can also be carbonylated in an insertion reaction to give the corresponding acyl complexes, the stereochemistry of which (17, 18) proceeds with retention of configuration at the carbon bonded to palladium. The acyl complex also can be formed from the addition of the corresponding acid halide to tetrakis (triphenylphosphine) palladium (0). [Pg.108]

The hydrocarboxylation can take place by insertion of the alkene into a metal-hydride bond followed by CO insertion and finally reaction of the acyl complex with solvent as illustrated in equation (36). Alternatively, a transition metal-carboxylate complex can be generated initially. Insertion of the alkene into the metal-carbon bond of this carboxylate complex followed by cleavage of the metal-carbon bond by solvent completes the addition, as shown in equation (37). Both sequences provide the same product. [Pg.936]

In the case of the reaction of Mn(CO)5CH3 shown above, isotopic labelling studies (with 14CO) show that the CO molecule inserted into the Mn-CH3 bond is onp of the five CO groups already coordinated, and not the external CO shown in the stoichiometric formula. It appears that an equilibrium is set up between the Mn(CO)5CH3 and a five-coordinate, 16-electron (i.e. coordinatively-unsaturated) acyl complex ... [Pg.351]

Mononuclear osmium half-sandwiches, with rf-cyclopentadienyls and 7]5-indenyls alkenyls and allenyls with t/-M-C bonds, 6, 558 alkenyl vinylidenes, 6, 593 alkyl, aryl, acyl complexes, 6, 552 with alkylidyne complexes, 6, 599 alkynyl and enynyl complexes, 6, 567 allenylidene and cumulenylidene complexes,... [Pg.151]


See other pages where Acyl complexes bonding is mentioned: [Pg.184]    [Pg.333]    [Pg.29]    [Pg.300]    [Pg.99]    [Pg.99]    [Pg.135]    [Pg.171]    [Pg.180]    [Pg.58]    [Pg.277]    [Pg.297]    [Pg.298]    [Pg.287]    [Pg.165]    [Pg.121]    [Pg.7]    [Pg.202]    [Pg.243]    [Pg.293]    [Pg.261]    [Pg.916]    [Pg.929]    [Pg.943]    [Pg.436]    [Pg.488]    [Pg.400]    [Pg.184]    [Pg.112]    [Pg.302]    [Pg.91]    [Pg.116]    [Pg.126]    [Pg.126]    [Pg.150]   
See also in sourсe #XX -- [ Pg.261 ]




SEARCH



Acyl complexes

Acylation Acyl complexes

Reductive Eliminations to Form C-X Bonds from Acyl Complexes

© 2024 chempedia.info