Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid-base interactions measurement thermodynamic parameters

Retention of Rohrschneider-McReynolds standards of selected chiral alcohols and ketones was measured to determine the thermodynamic selectivity parameters of stationary phases containing (- -)-61 (M = Pr, Eu, Dy, Er, Yb, n = 3, R = Mef) dissolved in poly(dimethylsiloxane) . Separation of selected racemic alcohols and ketones was achieved and the determined values of thermodynamic enantioselectivity were correlated with the molecular structure of the solutes studied. The decrease of the ionic radius of lanthanides induces greater increase of complexation efficiency for the alcohols than for the ketone coordination complexes. The selectivity of the studied stationary phases follows a common trend which is rationalized in terms of opposing electronic and steric effects of the Lewis acid-base interactions between the selected alcohols, ketones and lanthanide chelates. The retention of over fifty solutes on five stationary phases containing 61 (M = Pr, Eu, Dy, Er, Yb, n = 3, R = Mef) dissolved in polydimethylsiloxane were later measured ". The initial motivation for this work was to explore the utility of a solvation parameter model proposed and developed by Abraham and coworkers for complexing stationary phases containing metal coordination centers. Linear solvation... [Pg.721]

Inverse gas chromatography analysis at very high dilution and at finite concentrations of probe injection was carried out on a series of polymers and pigments used in paint formulations. Values of dispersion surface energies, and of acid-base interaction parameters were obtained for the materials, and pair interaction parameters were calculated from the results. The dispersion stability of each pigment/ polymer combination was measured and correlated with the acid-base interaction parameters of the materials, and is shown to justify the availability of fundamental thermodynamic interaction data to optimise performance aspects of protective coatings. 23 refs. [Pg.94]

From the results summarized in Table I, apparently the Brpnsted relationship will hold for all combinations of nucleophiles and electrophiles. Because, as pointed out previously, the Hammett equation is really a special case of the Brpnsted relationship, all the legion of nucleophile-electrophile, rate-equilibrium Hammett correlations that have been studied also fall under the scope of the Brpnsted relationship. For example, nucleophilicities of ArO , ArS , ArC(CN)2 , and the other families listed in footnote c of Table I have generally been correlated by the Hammett equation, where the acidities of benzoic acids in water are used as a model for substituent interactions with the reaction site (a), and the variable parameter p is used to define the sensitivity of the rate constants to these substituent effects. The Brpnsted equation (equation 3) offers a much more precise relationship of the same kind, because this equation does not depend on an arbitrary model and allows rate and equilibrium constants to be measured in the same solvent. Furthermore, the Brpnsted relationship is also applicable to families of aliphatic bases such as carboxylate ions (GCH2C02 ), alkoxide ions (GCH20 ), and amines (GCH2NH2). In addition, other correlations of a kinetic parameter (log fc, AGf, Ea, etc.) can be included with various thermodynamic parameters (pKfl, AG°, Eox, etc.) under the Brpnsted label. [Pg.139]

Inverse gas chromatography involves the sorption of a known probe molecule (adsorbate, vapour) and an unknown adsorbent stationary phase (solid sample). IGC may be experimentally configured for finite or infinite dilution concentrations of the adsorbate. The latter method is excellent for the determination of thermodynamic properties such as surface energies and Lewis acid-base parameters. Measurements in this range are extremely sensitive due to the low concentration regime where the highest energy sites of the surface interact with the probe molecules. [Pg.234]


See other pages where Acid-base interactions measurement thermodynamic parameters is mentioned: [Pg.203]    [Pg.87]    [Pg.84]    [Pg.465]    [Pg.151]    [Pg.1178]    [Pg.25]    [Pg.30]    [Pg.22]    [Pg.540]   
See also in sourсe #XX -- [ Pg.229 ]




SEARCH



Acid-base interactions

Acid-base measurement

Acidity measurement

Acids measurement

Acids parameters

Bases measurement

Interactive parameters

Measurement Parameters

Measuring acidity

Parameter measured

Thermodynamic acidity

Thermodynamic interactions

Thermodynamic measurements

Thermodynamic measurements acid-base interaction

Thermodynamic parameters

Thermodynamical parameters

Thermodynamics interactions

Thermodynamics, parameters

© 2024 chempedia.info