Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acid-base cements theory

It is better than the Lewis theory for describing acid-base cements, for it avoids the awkwardness that the Lewis definition has with protonic acids. However, as Day Selbin (1969) have observed, the generality of the theory is such that it includes nearly all chemical reactions, so that acid-base reactions could simply be termed chemical reactions . [Pg.19]

A final point needs to be made. Theory has indicated that AB cements should be amorphous. However, a degree of crystallization does sometimes occur, its extent varying from cement to cement, and this often misled early workers in the field who used X-ray diffraction as a principal method of study. Although this technique readily identifies crystalline phases, it cannot by its nature detect amorphous material, which may form the bulk of the matrix. Thus, in early work too much emphasis was given to crystalline structures and too little to amorphous ones. As we shall see, the formation of crystalUtes, far from being evidence of cement formation, is often the reverse, complete crystallinity being associated with a non-cementitious product of an acid-base reaction. [Pg.10]

The cement-forming reaction is a special case of an acid-base reaction so that concepts of acid, base and salt are central to the topic. In AB cement theory, we are concerned with the nature of the acid-base reaction and how the acidity and basicity of the reactants are affected by their constitution. Thus, it is appropriate at this stage to discuss the various definitions and theories available. [Pg.12]

The Arrhenius definition is not suitable for AB cements for several reasons. It cannot be applied to zinc oxide eugenol cements, for these are non-aqueous, nor to the metal oxychloride and oxysulphate cements, where the acid component is not a protonic acid. Indeed, the theory is, strictly speaking, not applicable at all to AB cements where the base is not a water-soluble hydroxide but either an insoluble oxide or a silicate. [Pg.15]

This concept covers most situations in the theory of AB cements. Cements based on aqueous solutions of phosphoric acid and poly(acrylic acid), and non-aqueous cements based on eugenol, alike fall within this definition. However, the theory does not, unfortunately, recognize salt formation as a criterion of an acid-base reaction, and the matrices of AB cements are conveniently described as salts. It is also uncertain whether it covers the metal oxide/metal halide or sulphate cements. Bare cations are not recognized as acids in the Bronsted-Lowry theory, but hydrated... [Pg.15]

Aluminosilicate glasses are used in certain AB cement formulations, and the acid-base balance in them is important. The Bronsted-Lowry theory cannot be applied to these aluminosilicate glasses it does not recognize silica as an acid, because silica is an aprotic acid. However, for most purposes the Bronsted-Lowry theory is a suitable conceptual framework although not of universal application in AB cement theory. [Pg.16]

From this discussion it can be seen that there is no ideal acid-base theory for AB cements and a pragmatic approach has to be adopted. Since the matrix is a salt, an AB cement can be defined quite simply as the product of the reaction of a powder and liquid component to yield a salt-like gel. The Bronsted-Lowry theory suffices to define all the bases and the protonic acids, and the Lewis theory to define the aprotic acids. The subject of acid-base balance in aluminosilicate glasses is covered by the Lux-Flood theory. [Pg.20]

These considerations apply to dilute solutions. In concentrated solutions the extensive forces will be diminished. Also if the bound coimterions become site-bound then both extensive forces are diminished. These are important factors to consider in the theory of acid-base gelation in AB cements, where solutions are concentrated and many counterions are site-bound. [Pg.81]

The theory of Bronsted (1923) and Lowry (1923a, b) is of more general applicability to AB cements. Their definition of an acid as a substance that gives up a proton differs little from that of Arrhenius. However, the same is not true of their definition of a base as a substance capable of accepting protons which is far wider than that of Arrhenius, which is limited to hydroxides yielding hydroxide ions in aqueous solution. These concepts of Bronsted and Lowry can be defined by the simple equation (Finston Rychtman, 1982) ... [Pg.15]

According to Yatsimirskii, group (2) and (3) species are equivalent to Pearson s hard acids and bases, and group (4), (5) and (6) species correspond to Pearson s soft acids and bases. This classification is of more value than HSAB theory to our subject. It can be seen that all cementforming anions come from group (3) and cations from groups (3), (4) and (5). Thus, the bonding in cement matrices formed from cation-anion combinations is not purely a but contains some n character. [Pg.26]


See other pages where Acid-base cements theory is mentioned: [Pg.5]    [Pg.6]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.26]    [Pg.28]    [Pg.209]    [Pg.19]    [Pg.312]    [Pg.242]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 ]




SEARCH



Acid theory

Acid-base cements

Acid-base theory

Bases theories

Cement-based

Relevance of acid-base theories to AB cements

© 2024 chempedia.info