Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acetylcholinesterase, inhibition catalysis

Acetylcholinesterase. Altered acetylcholinesterase less sensitive to organophosphorus and carbamate insecticides has been observed in a wide variety of insects and mites (51). Acetylcholinesterase inhibiting insecticides phosphorylate or carbamylate the serine residue in the active site of the enzyme preventing vital catalysis of acetylcholine. Resistance due to reduced sensitivity to inhibition of this target enzyme has been found in house fly, mosquitoes, green rice leafhopper, and both phytophagous and predacious species of mites. [Pg.69]

Antibody 15C5 was able to catalyse the hydrolysis of the triester [105] with cat 2.65 x 10 3 min 1 whilst a second antibody from the same immunization programme was later found to hydrolyse the acetylcholinesterase inhibitor Paraoxon [106] with kcat = 1.95 x 10 3min-1 at 25°C (Appendix entry 6.2) (Lavey and Janda, 1996b). Antibody 3H5 showed Michaelis-Menten kinetics and was strongly inhibited by the hapten [104]. It exhibited a linear dependence of the rate of hydrolysis on hydroxide ion concentration, suggesting that 3H5 effects catalysis by transition state stabilization rather than by general acid/base catalysis. [Pg.299]

Figure 3.3 (a) Covalent catalysis the catalytic mechanism of a serine protease. The enzyme acetylcholinesterase is chosen to illustrate the mechanism because it is an important enzyme in the nervous system. Catalysis occurs in three stages (i) binding of acetyl choline (ii) release of choline (iii) hydrolysis of acetyl group from the enzyme to produce acetate, (b) Mechanism of inhibition of serine proteases by diisopropylfluorophosphonate. See text for details. [Pg.40]

A reaction looked at earlier simulates borate inhibition of serine proteinases.33 Resorufin acetate (234) is proposed as an attractive substrate to use with chymotrypsin since the absorbance of the product is several times more intense than that formed when the more usual p-nitrophcnyl acetate is used as a substrate. The steady-state values are the same for the two substrates, which is expected if the slow deacylation step involves a common intermediate. Experiments show that the acetate can bind to chymotrypsin other than at the active site.210 Brownian dynamics simulations of the encounter kinetics between the active site of an acetylcholinesterase and a charged substrate together with ah initio quantum chemical calculations using the 3-21G set to probe the transformation of the Michaelis complex into a covalently bound tetrahedral intermediate have been carried out.211 The Glu 199 residue located near the enzyme active triad boosts acetylcholinesterase activity by increasing the encounter rate due to the favourable modification of the electric field inside the enzyme and by stabilization of the TS for the first chemical step of catalysis.211... [Pg.73]

Fair, H.K., Seravalli, J., Arbuckle, T., Quinn, D.M. (1994). Molecular recognition in acetylcholinesterase catalysis free-energy correlations for substrate turnover and inhibition by trifluoro ketone transition-state analogs. Biochemistry 33 8566-76. [Pg.152]


See other pages where Acetylcholinesterase, inhibition catalysis is mentioned: [Pg.148]    [Pg.260]    [Pg.88]    [Pg.127]    [Pg.263]   
See also in sourсe #XX -- [ Pg.347 ]




SEARCH



Acetylcholinesterase

Acetylcholinesterase, inhibition

Acetylcholinesterases

© 2024 chempedia.info