Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption spectrum, basis

The absorption spectrum of this nonstoichiometric phase forms the basis for the formerly much-used qualitative test for zinc oxide yellow when hot, white when cold . Alternatively, anion sites can be left vacant, e.g. ... [Pg.642]

On this basis = 0.0170 sec , = 0.645 sec , and K = 0.739 mole.P at 25 °C. The corresponding activation parameters were determined also by Es-penson. By a method involving extrapolation of the first-order rate plots at various wavelengths to zero time, the absorption spectrum of the intermediate was revealed (Fig. 1). Furthermore, the value of K obtained from the kinetics was compatible with that derived from measurements on the acid dependence of the spectrum of the intermediate. Rate data for a number of binuclear intermediates are collected in Table 2. Espenson shows there to be a correlation between the rate of decomposition of the dimer and the substitution lability of the more labile metal ion component. The latter is assessed in terms of the rate of substitution of SCN in the hydration sphere of the more labile hydrated metal ion. [Pg.158]

A method suitable for quantification of the functional class of bis(ethanol)amine antistatics, which lack UV chromophores, consists of reaction with methyl orange [53]. Atmer 163 (alkyl-diethanol amine) has been determined as a yellow complex at 415 nm after interaction with a bromophenol/cresole mixture [64]. Hilton [65] coupled extracted phenolic antioxidants with diazotised p-nitroaniline in strongly acidic medium and carried out identification on the basis of the visible absorption spectrum in alkaline solution. The antioxidant Nonox Cl in... [Pg.310]

The core of the iron storage protein ferritin consists of a hydrated ferric oxide-phosphate complex. Various models have been proposed which feature Fe111 06 oct., Fe111 O4 tet. or Fe111 O4 tet. Fe111 06 oct. complexing the first listed is preferred by Gray (99) on the basis of the electronic absorption spectrum. The protein very closely related to ferritin which occurs in the mold Phycomyces blakesleeanus contains... [Pg.166]

Therefore, the action spectrum for phototropism does not simply reflect the absorption spectrum of the active photoreceptor pigment itself, but instead, its absorption spectrum somehow modified by shading pigments. However, on this basis Thimann and Curry failed to calculate a curve fitting the experimental action spec-... [Pg.15]

Figure 20. The (So —> S2) absorption spectrum of pyrazine for reduced three- and four-dimensional models (left and middle panels) and for a complete 24-vibrational model (right panel). For the three- and four-dimensional models, the exact quantum mechanical results (full line) are obtained using the Fourier method [43,45]. For the 24-dimensional model (nearly converged), quantum mechanical results are obtained using version 8 of the MCTDH program [210]. For all three models, the calculations are done in the diabatic representation. In the multiple spawning calculations (dashed lines) the spawning threshold 0,o) is set to 0.05, the initial size of the basis set for the three-, four-, and 24-dimensional models is 20, 40, and 60, and the total number of basis functions is limited to 900 (i.e., regardless of the magnitude of the effective nonadiabatic coupling, we do not spawn new basis functions once the total number of basis functions reaches 900). Figure 20. The (So —> S2) absorption spectrum of pyrazine for reduced three- and four-dimensional models (left and middle panels) and for a complete 24-vibrational model (right panel). For the three- and four-dimensional models, the exact quantum mechanical results (full line) are obtained using the Fourier method [43,45]. For the 24-dimensional model (nearly converged), quantum mechanical results are obtained using version 8 of the MCTDH program [210]. For all three models, the calculations are done in the diabatic representation. In the multiple spawning calculations (dashed lines) the spawning threshold 0,o) is set to 0.05, the initial size of the basis set for the three-, four-, and 24-dimensional models is 20, 40, and 60, and the total number of basis functions is limited to 900 (i.e., regardless of the magnitude of the effective nonadiabatic coupling, we do not spawn new basis functions once the total number of basis functions reaches 900).
Figure 21. The (So — S2) absorption spectrum of pyrazine for the reduced three-dimensional model using different spawning thresholds. Full line Exact quantum mechanical results. Dashed line Multiple spawning results for — 2.5, 5.0, 10, and 20. (All other computational details are as in Fig. 20.) As the spawning threshold is increased, the number of spawned basis functions decreases, the numerical effort decreases, and the accuracy of the result deteriorates (slowly). In this case, the final size of the basis set (at t — 0.5 ps) varies from 860 for 0 = 2.5 to 285 for 0 = 20. Figure 21. The (So — S2) absorption spectrum of pyrazine for the reduced three-dimensional model using different spawning thresholds. Full line Exact quantum mechanical results. Dashed line Multiple spawning results for — 2.5, 5.0, 10, and 20. (All other computational details are as in Fig. 20.) As the spawning threshold is increased, the number of spawned basis functions decreases, the numerical effort decreases, and the accuracy of the result deteriorates (slowly). In this case, the final size of the basis set (at t — 0.5 ps) varies from 860 for 0 = 2.5 to 285 for 0 = 20.
This effect induces a free induction decay (FID) signal in the detection circuit. The FID can be measured, and the normal absorption spectrum can be obtained by means of an inverse Fourier transform. A variety of experimental extensions have been developed for this approach. By means of particular pulse sequences it is possible to detect spin resonances selectively on the basis of a broad ensemble of properties such as spatial proximity and dipolar coupling strengths. The central fundamental quantity of interest is, however, still the energy spectrum of the nuclear spin,... [Pg.27]

In addition, the excitation delocalization length of an aggregate could be estimated on the basis of the measurement of the aggregate radiative lifetime and its absorption spectrum half-width as described above [10, 11]. Such estimation, being interesting as itself, could also be regarded as the lower limit of physical dimension of the aggregate. [Pg.141]

The formation of EDTA-metal ion complexes invariably attribute a change in the absorption spectrum pattern which ultimately forms the basis of a large number of colorimetric assays. [Pg.164]

Figure 18B shows the absorption spectrum for the feed solution used in the permeation experiment. Although both molecules are present in solution at the same concentration, the higher absorbance of the quinine nearly swamps out the 252-nm peak of the pyridine. Figure 18C shows the absorption spectrum of the permeate solution after a 72-hour permeation experiment. In spite of the higher absorbance of the quinine (larger molecule), only the peak for the pyridine (smaller molecule) is seen in this spectrum. Note, in particular, the complete absence of the very intense quinine band centered at 225 nm. Figure 18C shows that, to our ability to make the measurement, this bottleneck nanotubule membrane has filtered these two molecules on the basis of molecular size. [Pg.39]

On the basis of its infra-red absorption spectrum Gtowiak [20] deduced an ionic structure (XHIb), confirming, in principle, the formula (Xllla) ... [Pg.206]

A computational study of the density dependence of the rototrans-lational collision-induced absorption spectrum of nitrogen, oxygen and carbon dioxyde was reported by Steele and Birnbaum [375] on the basis of the classical quadrupole induction model. [Pg.303]


See other pages where Absorption spectrum, basis is mentioned: [Pg.121]    [Pg.54]    [Pg.455]    [Pg.362]    [Pg.49]    [Pg.23]    [Pg.138]    [Pg.501]    [Pg.303]    [Pg.182]    [Pg.51]    [Pg.113]    [Pg.325]    [Pg.98]    [Pg.268]    [Pg.87]    [Pg.282]    [Pg.136]    [Pg.28]    [Pg.10]    [Pg.204]    [Pg.241]    [Pg.74]    [Pg.1235]    [Pg.277]    [Pg.487]    [Pg.101]    [Pg.75]    [Pg.384]    [Pg.26]    [Pg.520]    [Pg.411]    [Pg.165]    [Pg.325]    [Pg.731]    [Pg.795]   
See also in sourсe #XX -- [ Pg.28 ]




SEARCH



Basis spectra

© 2024 chempedia.info