Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorption band width

Little is known about the fluorescence of the chla spectral forms. It was recently suggested, on the basis of gaussian curve analysis combined with band calculations, that each of the spectral forms of PSII antenna has a separate emission, with Stokes shifts between 2nm and 3nm [133]. These values are much smaller than those for chla in non-polar solvents (6-8 nm). This is due to the narrow band widths of the spectral forms, as the shift is determined by the absorption band width for thermally relaxed excited states [157]. The fluorescence rate constants are expected to be rather similar for the different forms as their gaussian band widths are similar [71], It is thought that the fluorescence yields are also probably rather similar as the emission of the sj tral forms is closely approximated by a Boltzmann distribution at room temperature for both LHCII and total PSII antenna [71, 133]. [Pg.163]

Pendant groups MJIO Absorption band Width Emission band Stokes shift Width ... [Pg.635]

Ion-Pair Charge-Transfer Absorption Band Widths... [Pg.334]

Table 11.14 Influence of coordination number and valence on the absorption band width (cm )... Table 11.14 Influence of coordination number and valence on the absorption band width (cm )...
Finally, if one has a condition with incoherent radiation of a small band width Av exciting a broad absorption band with a(v + A ) one finds ... [Pg.1049]

Dye lasers, frequency doubled if necessary, provide ideal sources for such experiments. The radiation is very intense, the line width is small ( 1 cm ) and the wavenumber may be tuned to match any absorption band in the visible or near-ultraviolet region. [Pg.377]

It is equivalent, when an ftk spectrometer is used, to re-apodization of the data. Curve fitting is a method of modeling a real absorption band on the assumption that it consists of a series of overlapped peaks having a specific lineshape. Typically the user specifies the number of peaks to attempt to resolve and the type of lineshape. The program then varies the positions, sizes, and widths of the peaks to minimize the difference between the model and the spectmm. The largest difficulty is in knowing the correct number of peaks to resolve. Derivative spectra are often useful in determining the correct number (18,53,54). [Pg.200]

RAIRS spectra contain absorption band structures related to electronic transitions and vibrations of the bulk, the surface, or adsorbed molecules. In reflectance spectroscopy the ahsorhance is usually determined hy calculating -log(Rs/Ro), where Rs represents the reflectance from the adsorhate-covered substrate and Rq is the reflectance from the bare substrate. For thin films with strong dipole oscillators, the Berre-man effect, which can lead to an additional feature in the reflectance spectrum, must also be considered (Sect. 4.9 Ellipsometry). The frequencies, intensities, full widths at half maximum, and band line-shapes in the absorption spectrum yield information about adsorption states, chemical environment, ordering effects, and vibrational coupling. [Pg.251]

In the earlier treatment we reached the conclusion that resonance absorption occurs at the Larmor precessional frequency, a conclusion implying that the absorption line has infinitesimal width. Actually NMR absorption bands have finite widths for several reasons, one of which is spin-lattice relaxation. According to the Heisenberg uncertainty principle, which can be stated... [Pg.158]

The bracketed term in Eq. (4-60b) describes a Lorentzian line shape for the NMR absorption band. The maximum in the band occurs at the resonance frequency, wq. Expressed in units of X0W0T2/2, the maximum value of x" s 1 at one-half this maximum peak height we find, by substitution, that (wq — w) = IIT. Using w = 2 ttv to convert to frequency (in Hz) gives (vq — v) = 3-7 T 2. However, the peak width is twice this, or... [Pg.164]

Hisatsune and co-workers [290—299] have made extensive kinetic studies of the decomposition of various ions in alkali halide discs. Widths and frequencies of IR absorption bands are an indication of the extent to which a reactant ion forms a solid solution with the matrix halide. Sodium acetate was much less soluble in KBr than in KI but the activation energy for acetate breakdown in the latter matrix was the larger [297]. Shifts in frequency, indicating changes in symmetry, have been reported for oxalate [294] and formate [300] ions dispersed in KBr. [Pg.29]

Part of the absorption spectrum of an aqueous solution of neodymium(iii) -configuration/ - is shown in Fig. 10-4. The situation shown there is quite typical of the whole of the lanthanoid series i.e. we could have chosen any/" configuration equally well to illustrate the main characteristics of the spectra of lanthanoid complexes. We shall focus on three main features splittings, band widths and absolute excitation frequencies. [Pg.203]

Figure lb shows the transient absorption spectra of RF (i.e. the difference between the ground singlet and excited triplet states) obtained by laser-flash photolysis using a Nd Yag pulsed laser operating at 355 nm (10 ns pulse width) as excitation source. At short times after the laser pulse, the transient spectrum shows the characteristic absorption of the lowest vibrational triplet state transitions (0 <— 0) and (1 <— 0) at approximately 715 and 660 nm, respectively. In the absence of GA, the initial triplet state decays with a lifetime around 27 ps in deoxygenated solutions by dismutation reaction to form semi oxidized and semi reduced forms with characteristic absorption bands at 360 nm and 500-600 nm and (Melo et al., 1999). However, in the presence of GA, the SRF is efficiently quenched by the gum with a bimolecular rate constant = 1.6x10 M-is-i calculated... [Pg.13]

The formation of monomer and dimer of (salen)Co AIX3 complex can be confirmed by Al NMR. Monomer complex la show Al NMR chemical shift on 5=43.1 ppm line width =30.2 Hz and dimer complex lb 5=37.7 ppm line width =12.7 Hz. Further instrumental evidence may be viewed by UV-Vis spectrophotometer. The new synthesized complex showed absorption band at 370 nm. The characteristic absorption band of the precatalyst Co(salen) at 420 nm disappeared (Figure 1). It has long been known that oxygen atoms of the metal complexes of the SchifT bases are able to coordinate to the transition and group 13 metals to form bi- and trinuclear complex [9]. On these proofs the possible structure is shown in Scheme 1. [Pg.206]

Fluorophores containing 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene as a core skeleton are commonly designated as BODIPY fluorophores. Due to their useful photophysical properties including high fluorescence quantum yields, high molar absorption coefficient, narrow absorption and emission band width, and their high photostability [50], BODIPY dyes are proven to be extremely versatile and useful in many biological applications Fig. 11 [68]. [Pg.162]


See other pages where Absorption band width is mentioned: [Pg.50]    [Pg.173]    [Pg.327]    [Pg.53]    [Pg.77]    [Pg.163]    [Pg.150]    [Pg.50]    [Pg.173]    [Pg.327]    [Pg.53]    [Pg.77]    [Pg.163]    [Pg.150]    [Pg.1143]    [Pg.376]    [Pg.446]    [Pg.339]    [Pg.421]    [Pg.422]    [Pg.158]    [Pg.213]    [Pg.663]    [Pg.904]    [Pg.905]    [Pg.231]    [Pg.171]    [Pg.175]    [Pg.177]    [Pg.393]    [Pg.904]    [Pg.905]    [Pg.124]    [Pg.1143]    [Pg.220]    [Pg.1009]    [Pg.79]    [Pg.43]    [Pg.493]    [Pg.27]    [Pg.89]    [Pg.146]   
See also in sourсe #XX -- [ Pg.47 , Pg.120 ]




SEARCH



Absorption bands

Absorption width

Widths of absorption bands

© 2024 chempedia.info