Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Absorbance, excited-state

Reverse saturable absorption is an increase in the absorption coefficient of a material that is proportional to pump intensity. This phenomenon typically involves the population of a strongly absorbing excited state and is the basis of optical limiters or sensor protection elements. A variety of electronic and molecular reorientation processes can give rise to reverse saturable absorption many materials exhibit this phenomenon, including fuUerenes, phthalocyanine compounds (qv), and organometaUic complexes. [Pg.140]

See spectroscopy resonance (2) ultraviolet absorber excited state. [Pg.3]

Light stabilizers are used to protect plastics, particularly polyolefins, from discoloration, embrittlement, and eventual degradation by UV light. The three major classes of light stabilizers are UV absorbers, excited state quenchers, and free-radical terminators. Each class is named for the mechanism by which it prevents degradation. The major types included in each light stabilizer class may be categorized by their chemistries, as shown in Table 4.17. [Pg.287]

Stabilization of synthetic polymers may be acquired using screeners, UV-absorbers, excited-stated quenchers, peroxide decomposers, free radical... [Pg.112]

Second-order effects include experiments designed to clock chemical reactions, pioneered by Zewail and coworkers [25]. The experiments are shown schematically in figure Al.6.10. An initial 100-150 fs pulse moves population from the bound ground state to the dissociative first excited state in ICN. A second pulse, time delayed from the first then moves population from the first excited state to the second excited state, which is also dissociative. By noting the frequency of light absorbed from tlie second pulse, Zewail can estimate the distance between the two excited-state surfaces and thus infer the motion of the initially prepared wavepacket on the first excited state (figure Al.6.10 ). [Pg.242]

Another example of a teclmique for detecting absorption of laser radiation in gaseous samples is to use multiphoton ionization with mtense pulses of light. Once a molecule has been electronically excited, the excited state may absorb one or more additional photons until it is ionized. The electrons can be measured as a current generated across the cell, or can be counted individually by an electron multiplier this can be a very sensitive technique for detecting a small number of molecules excited. [Pg.1123]

Spectral lines are fiirther broadened by collisions. To a first approximation, collisions can be drought of as just reducing the lifetime of the excited state. For example, collisions of molecules will connnonly change the rotational state. That will reduce the lifetime of a given state. Even if die state is not changed, the collision will cause a phase shift in the light wave being absorbed or emitted and that will have a similar effect. The line shapes of collisionally broadened lines are similar to the natural line shape of equation (B1.1.20) with a lifetime related to the mean time between collisions. The details will depend on the nature of the intemrolecular forces. We will not pursue the subject fiirther here. [Pg.1144]

All the previous discussion in this chapter has been concerned with absorption or emission of a single photon. However, it is possible for an atom or molecule to absorb two or more photons simultaneously from a light beam to produce an excited state whose energy is the sum of the energies of the photons absorbed. This can happen even when there is no intemrediate stationary state of the system at the energy of one of the photons. The possibility was first demonstrated theoretically by Maria Goppert-Mayer in 1931 [29], but experimental observations had to await the development of the laser. Multiphoton spectroscopy is now a iisefiil technique [30, 31]. [Pg.1146]

For two Bom-Oppenlieimer surfaces (the ground state and a single electronic excited state), the total photodissociation cross section for the system to absorb a photon of energy ai, given that it is initially at a state x) with energy can be shown, by simple application of second-order perturbation theory, to be [89]... [Pg.2304]

A-4-Thiazoline-2-one and its derivatives absorb in the region of 247 nm [244 nm in cyclohexane (106)]. Thks band involves a transition (30. 102). From PPP calculations, the first excited state of... [Pg.389]

Hydroxybenzophenones represent the largest and most versatile class of ulbaviolet stabilizers that are used to protect materials from the degradative effects of ulbaviolet radiation. They function by absorbing ultraviolet radiation and by quenching elecbonically excited states. [Pg.1011]

Hindered amines, such as 4-(2,2,6,6-tetramethylpiperidinyl) decanedioate, serve as radical scavengers and will protect thin Aims under conditions in which ultraviolet absorbers are ineffective. Metal salts of nickel, such as dibutyldithiocarbamate, are used in polyolefins to quench singlet oxygen or elecbonically excited states of other species in the polymer. Zinc salts function as peroxide decomposers. [Pg.1011]

We can use the energy level diagram in Figure 10.14 to explain an absorbance spectrum. The thick lines labeled Eq and Ei represent the analyte s ground (lowest) electronic state and its first electronic excited state. Superimposed on each electronic energy level is a series of lines representing vibrational energy levels. [Pg.381]

A more important source of UV/Vis absorption for inorganic metal-ligand complexes is charge transfer, in which absorbing a photon produces an excited state species that can be described in terms of the transfer of an electron from the metal, M, to the ligand, L. [Pg.382]

In atomic emission, the decrease in emission intensity when light emitted by excited state atoms in the center of a flame or plasma is absorbed by atoms in the outer portion of the flame. [Pg.438]

Two typical dye molecules. The europium complex (a) transfers absorbed light to excited-state levels of the complexed Eu , from which lasing occurs. The perylene molecule (b) converts incident radiation into a triplet state, which decays slowly and so allows lasing to occur. [Pg.133]

Another area of research ia laser photochemistry is the dissociation of molecular species by absorption of many photons (105). The dissociation energy of many molecules is around 4.8 x 10 J (3 eV). If one uses an iafrared laser with a photon energy around 1.6 x 10 ° J (0.1 eV), about 30 photons would have to be absorbed to produce dissociation (Eig. 17). The curve shows the molecular binding energy for a polyatomic molecule as a function of interatomic distance. The horizontal lines iadicate bound excited states of the molecule. These are the vibrational states of the molecule. Eor... [Pg.18]


See other pages where Absorbance, excited-state is mentioned: [Pg.23]    [Pg.129]    [Pg.58]    [Pg.59]    [Pg.23]    [Pg.129]    [Pg.58]    [Pg.59]    [Pg.170]    [Pg.310]    [Pg.35]    [Pg.56]    [Pg.1121]    [Pg.1123]    [Pg.1672]    [Pg.2457]    [Pg.2492]    [Pg.261]    [Pg.21]    [Pg.372]    [Pg.384]    [Pg.423]    [Pg.438]    [Pg.778]    [Pg.123]    [Pg.123]    [Pg.124]    [Pg.124]    [Pg.127]    [Pg.134]    [Pg.135]    [Pg.399]    [Pg.65]    [Pg.240]    [Pg.244]    [Pg.18]   
See also in sourсe #XX -- [ Pg.450 , Pg.453 , Pg.471 ]




SEARCH



Absorbing state

© 2024 chempedia.info