Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zero Electron Kinetic Energy ZEKE spectrum

There have been numerous photodetachment studies of small cluster anions, and we now give some examples. Noble metal clusters (Cu, Ag,7, Au , n = 1-10) have been studied by Ho et al. [23], who resolved vibrations in all three dimers. Studies of alkali metal cluster anions have included those of Na ( = 2-5), K (n = 2-19), RbJ 3, and CS2-3 [24,25]. Carbon cluster anions C,T have photoelectron spectra that are consistent with linear chains for n = 2-9 and monocyclic rings for n = 10-29 [26]. Photoelectron spectra of Sb and Bi to n = 4 [27] show rich vibrational structure for the dimers, and the spectra of the larger clusters could be interpreted in terms of ab initio calculations. The threshold photodetachment (zero electron kinetic energy, ZEKE) spectrum of Si4 [28] shows a progression of well-resolved transitions between the ground state of the rhombic anion (Dzh, and vibrational levels of the first excited... [Pg.93]

Two especially important variants of REMPI (Johnson, et al., 1975) spectroscopy are ionization-dip (Cooper, et al., 1981) and Zero Electron Kinetic Energy (ZEKE) (Miiller-Dethlefs and Schlag, 1991 Merkt, 1997 Signorell and Merkt, 1999) photoelectron spectroscopy. Ionization-dip REMPI spectroscopy is especially useful when one wants to record free<—bound spectra from a single, selectable v, J level. Without such v, J selection, most of the oscillatory structure in a free<—bound spectrum will be washed out. One potential problem with some ionization-dip schemes is that, if the ionization transition originates from the initial level of the free<—bound transition being studied, there is a possibility that the observed linewidths will be distorted by power broadening (especially when the free final state is a weakly predissociated state with linewidth < lcm-1). [Pg.38]

Time-of-flight mass spectrometers have been used as detectors in a wider variety of experiments tlian any other mass spectrometer. This is especially true of spectroscopic applications, many of which are discussed in this encyclopedia. Unlike the other instruments described in this chapter, the TOP mass spectrometer is usually used for one purpose, to acquire the mass spectrum of a compound. They caimot generally be used for the kinds of ion-molecule chemistry discussed in this chapter, or structural characterization experiments such as collision-induced dissociation. Plowever, they are easily used as detectors for spectroscopic applications such as multi-photoionization (for the spectroscopy of molecular excited states) [38], zero kinetic energy electron spectroscopy [39] (ZEKE, for the precise measurement of ionization energies) and comcidence measurements (such as photoelectron-photoion coincidence spectroscopy [40] for the measurement of ion fragmentation breakdown diagrams). [Pg.1354]

Figure 9.50 Processes involved in obtaining (a) an ultraviolet photoelectron spectrum, (b) a zero kinetic energy photoelectron (ZEKE-PE) spectrum by a one-photon process and (c) a ZEKE-PE spectrum by a two-photon process in which the first photon is resonant with an excited electronic state of the molecule... Figure 9.50 Processes involved in obtaining (a) an ultraviolet photoelectron spectrum, (b) a zero kinetic energy photoelectron (ZEKE-PE) spectrum by a one-photon process and (c) a ZEKE-PE spectrum by a two-photon process in which the first photon is resonant with an excited electronic state of the molecule...
Figure 9.51 A zero kinetic energy photoelectron (ZEKE-PE) resonant two-photon spectrum of 1,4-difluorobenzene in which the first photon excites the molecule of the zero-point level of the S-[ excited electronic state of the molecule. (Reproduced, with permission, from Reiser, G., Rieger, D., Wright, T.G., Muller-Dethlefs, K. and Schlag, E.W., J. Phys. Chem., 97, 4335, 1993)... Figure 9.51 A zero kinetic energy photoelectron (ZEKE-PE) resonant two-photon spectrum of 1,4-difluorobenzene in which the first photon excites the molecule of the zero-point level of the S-[ excited electronic state of the molecule. (Reproduced, with permission, from Reiser, G., Rieger, D., Wright, T.G., Muller-Dethlefs, K. and Schlag, E.W., J. Phys. Chem., 97, 4335, 1993)...
A successful modification to the technique involves delayed pulsed-field extraction which allows discrimination between zero and near-zero kinetic energy electrons. About 1 ps after the laser pulse has produced photoelectrons, a small voltage pulse is applied. This has the effect of amplifying the differences in the velocities of the photoelectrons and allows easy discrimination between them as a result of the different times of arrival at the detector. In this way only the electrons which originally had zero kinetic energy following ionization can be counted to give the ZEKE-PE spectrum. [Pg.403]


See other pages where Zero Electron Kinetic Energy ZEKE spectrum is mentioned: [Pg.607]    [Pg.159]    [Pg.159]    [Pg.685]    [Pg.273]    [Pg.273]    [Pg.704]    [Pg.18]    [Pg.270]    [Pg.415]    [Pg.266]    [Pg.266]    [Pg.45]    [Pg.45]   
See also in sourсe #XX -- [ Pg.558 ]




SEARCH



Electron energy spectrum

Electron kinetic

Electron kinetics

Kinetic electronic

Kinetic energy spectra

ZEKE spectra

Zero energy

Zero kinetic energy electron

Zero-electron-kinetic energy (ZEKE

© 2024 chempedia.info