Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite spectrum

An interesting point is that infrared absorptions that are symmetry-forbidden and hence that do not appear in the spectrum of the gaseous molecule may appear when that molecule is adsorbed. Thus Sheppard and Yates [74] found that normally forbidden bands could be detected in the case of methane and hydrogen adsorbed on glass this meant that there was a decrease in molecular symmetry. In the case of the methane, it appeared from the band shapes that some reduction in rotational degrees of freedom had occurred. Figure XVII-16 shows the IR spectrum for a physisorbed H2 system, and Refs. 69 and 75 give the IR spectra for adsorbed N2 (on Ni) and O2 (in a zeolite), respectively. [Pg.584]

There have been some investigations into adsorption on zeolites (1, 2), and Greenler and Slager (3) have outlined a method for obtaining the Raman spectrum of a thin solid film deposited on a reflecting silver surface. [Pg.294]

The most significant changes associated with adsorption which have been observed to date were the displacements (45) of Raman fundamentals of ethyne on adsorption on zeolite 4A (see Table IX). Such changes constitute a useful monitor of adsorbate-adsorbent interaction for various adsorbents. The appearance of the Raman spectrum of ethyne on zeolites A suggests an... [Pg.335]

Angell (1) has investigated the Raman spectra of acetonitrile, propylene, and acrolein on a number of zeolites and found that physical adsorption occurred. There are sufficient differences between the spectrum of the liquid and of the adsorbed species (e.g. the carbon-carbon double bond stretching in the case of propylene and the carbon-nitrogen triple bond stretching in the case of acetonitrile) to make it quite clear that it was not merely a case of condensation in the pores of the solid adsorbent. [Pg.339]

In view of the accessibility of zeolite A (only linear molecules adsorb) the coupling will take place at the outer surface of the zeolite crystals. Indeed, Ag-Y and especially a Ag-loaded amorphous silica-alumina, containing a spectrum of wider pores, mrned out to be much better promoter-agents (ref. 28). The silica-alumina is etched with aqueous NaOH and subsequently exchanged with Ag(I). [Pg.213]

At the low-molecular-weight end of the spectrum, a process newly commercialized by Mobil for converting methanol into gasoline has significantly expanded opportunities in C-1 chemistry— the upgrading of one-carbon molectrles to mrrlticarbon products. The process involves the use of ZSM-5, a shape-selective zeolite catalyst. (See "Zeolite and Shape-Selective Catalysts" in Chapter 9.)... [Pg.102]

In order to prepare ZSM-5 zeolite nanocrystals, an A1 source of aluminium isopropoxide was added into solution A, and hydrothermal synthesis of the solution A containing Si and A1 sources was carried out in an 0-15/cyclohexane solution at 120 degree C for 50 h. Figures 4 show ac-NHj-TPD spectra and a SEM photograph of the ZSM-5 zeolite nanocrystals. Nanocrystals with a diameter of approximately 150 nm were observed, and the NH3-TPD spectrum showed desorption of NHj above 600 K, indicating that the nanocrystals possessed strong acid sites. [Pg.188]

Deuterium NMR has recently been used to study molecular motion of organic adsorbates on alumina (1.) and in framework aluminosilicates (2). The advantage of NMR is that the quadrupole interaction dominates the spectrum. This intramolecular interaction depends on the average ordering and dynamics of the individual molecules. In the present work we describe NMR measurements of deuterated benzene in (Na)X and (Cs,Na)X zeolite. [Pg.485]

UV-visible spectra of the cluster 1 and molybdenum/zeolite catalysts are shown in Figure 1. The cluster 1 showed bands at 300, 390 and ca. 650 nm. Similar bands were observed for the spectrum of each molybdenum/zeolite catalyst, suggesting that the structure of cluster 1 was practically unchanged after ion exchange. [Pg.112]

Characterization. In-situ diffuse reflectance FTIR (DRIFT) experiments were carried out with undiluted samples of the zeolites in a Spectratech DRIFT cell and a Nicolet Magna 550 spectrometer. Most experiments were carried out in a flow mode, passing 0.84 ml/s of a gas mixture containing inert (He, Ar or N2) and N2O, NO, CO or mixtures of these gases continuously through the cell at atmospheric pressure. Each spectrum was recorded by addition of 256 scans and a resolution of 8 cm. ... [Pg.643]

For infrared spectroscopy, 20-50 mg of the cobalt-exchanged zeolite was pressed into a self-supporting wafer and placed into an infrared cell similar to that described by Joly et al. [21], Spectra were recorded on a Digilab FTS-50 Fourier-transform infrared spectrometer at a resolution of 4 cm-i. Typically, 64 or 256 scans were coadded to obtain a good signal-to-noise ratio. A reference spectrum of Co-ZSM-5 in He taken at the same temperature was subtracted from each spectrum. [Pg.662]

Spectroscopy. In the methods discussed so far, the information obtained is essentially limited to the analysis of mass balances. In that re.spect they are blind methods, since they only yield macroscopic averaged information. It is also possible to study the spectrum of a suitable probe molecule adsorbed on a catalyst surface and to derive information on the type and nature of the surface sites from it. A good illustration is that of pyridine adsorbed on a zeolite containing both Lewis (L) and Brbnsted (B) acid sites. Figure 3.53 shows a typical IR ab.sorption spectrum of adsorbed pyridine. The spectrum exhibits four bands that can be assigned to adsorbed pyridine and pyridinium ions. Pyridine adsorbed on a Bronsted site forms a (protonated) pyridium ion whereas adsorption on a Lewis site only leads to the formation of a co-ordination complex. [Pg.109]

Figure 3.53. IR transmission absorption spectrum of pyridine adsorbed on partly dehydroxylated HY zeolite (Van Bekkum et al, 1991) B = Bronsted acid sites L = Lewis acid sites. Figure 3.53. IR transmission absorption spectrum of pyridine adsorbed on partly dehydroxylated HY zeolite (Van Bekkum et al, 1991) B = Bronsted acid sites L = Lewis acid sites.
Fig. 5.3.3 (A) NMR spectrum of hyperpolarized 129Xe in NaX zeolites. (B) 2D slice in the flow direction of a 3D chemical shift selective MRI of gas in the zeolite pellets. (C) 2D slice perpendicular to the flow direction of the same 3D chemical shift selective MRI as in (A). Adapted from Ref. [14]. Fig. 5.3.3 (A) NMR spectrum of hyperpolarized 129Xe in NaX zeolites. (B) 2D slice in the flow direction of a 3D chemical shift selective MRI of gas in the zeolite pellets. (C) 2D slice perpendicular to the flow direction of the same 3D chemical shift selective MRI as in (A). Adapted from Ref. [14].
Fig. 5.3.8 Photograph of the detection region of the NMR probe with radiofrequency coil. A methane—air mixture was ignited above the zeolite pellets. The mixture also contained xenon for NMR detection. Hp-129Xe NMR spectra with 30% xenon (from high-density xenon optical pumping) in 70% methane is depicted. (1) The spectrum in the absence of combustion and (2) the spectrum during combustion. Adapted from Ref. [2],... Fig. 5.3.8 Photograph of the detection region of the NMR probe with radiofrequency coil. A methane—air mixture was ignited above the zeolite pellets. The mixture also contained xenon for NMR detection. Hp-129Xe NMR spectra with 30% xenon (from high-density xenon optical pumping) in 70% methane is depicted. (1) The spectrum in the absence of combustion and (2) the spectrum during combustion. Adapted from Ref. [2],...
Hyperfine interaction has also been used to study adsorption sites on several catalysts. One paramagnetic probe is the same superoxide ion formed from oxygen-16, which has no nuclear magnetic moment. Examination of the spectrum shown in Fig. 5 shows that the adsorbed molecule ion reacts rather strongly with one aluminum atom in a decationated zeolite (S3). The spectrum can be resolved into three sets of six hyperfine lines. Each set of lines represents the hyperfine interaction with WA1 (I = f) along one of the three principal axes. The fairly uniform splitting in the three directions indicates that the impaired electron is mixing with an... [Pg.275]

The NO spectrum has now been studied for the molecule adsorbed on ZnO, ZnS (18), 7-AI2O3, silica-alumina, silica-magnesia (20), an A-type zeolite (97), H-mordenite (98), and a variety of Y-type zeolites including NaY (19), MgY, CaY, BaY, SrY (81), decationated-Y (19), ScY, LaY, and A1HY (99). The nitric oxide molecule has mainly been used as a... [Pg.307]

A five-line spectrum attributed to the NH2 radical has been observed by Sorokin and co-workers (105) in y-irradiated zeolites containing am-... [Pg.309]


See other pages where Zeolite spectrum is mentioned: [Pg.27]    [Pg.228]    [Pg.126]    [Pg.171]    [Pg.27]    [Pg.228]    [Pg.126]    [Pg.171]    [Pg.312]    [Pg.321]    [Pg.334]    [Pg.306]    [Pg.188]    [Pg.198]    [Pg.92]    [Pg.368]    [Pg.455]    [Pg.495]    [Pg.574]    [Pg.43]    [Pg.108]    [Pg.165]    [Pg.563]    [Pg.102]    [Pg.178]    [Pg.179]    [Pg.275]    [Pg.295]    [Pg.309]    [Pg.309]    [Pg.312]    [Pg.312]    [Pg.316]    [Pg.317]    [Pg.317]   
See also in sourсe #XX -- [ Pg.2 , Pg.104 , Pg.109 , Pg.110 ]




SEARCH



Dehydrated zeolite spectra

Raman spectra of zeolites

Some Selected Examples of Modeling Zeolite Vibrational Spectra

Zeolite DRS spectra

Zeolite Mossbauer spectra

Zeolite Raman spectra

Zeolite diffuse reflectance spectrum

Zeolite electronic spectrum

Zeolite emission spectrum

Zeolite high-resolution ESR spectra

Zeolite simulated spectrum

Zeolite vibrational spectra

© 2024 chempedia.info