Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Zeolite catalysis theory reaction

Cince the catalytic activity of synthetic zeolites was first revealed (1, 2), catalytic properties of zeolites have received increasing attention. The role of zeolites as catalysts, together with their catalytic polyfunctionality, results from specific properties of the individual catalytic reaction and of the individual zeolite. These circumstances as well as the different experimental conditions under which they have been studied make it difficult to generalize on the experimental data from zeolite catalysis. As new data have accumulated, new theories about the nature of the catalytic activity of zeolites have evolved (8-9). The most common theories correlate zeolite catalytic activity with their proton-donating and electron-deficient functions. As proton-donating sites or Bronsted acid sites one considers hydroxyl groups of decationized zeolites these are formed by direct substitution of part of the cations for protons on decomposition of NH4+ cations or as a result of hydrolysis after substitution of alkali cations for rare earth cations. As electron-deficient sites or Lewis acid sites one considers usually three-coordinated aluminum atoms, formed as a result of dehydroxylation of H-zeolites by calcination (8,10-13). [Pg.242]

The dependence of the overall rate of the catalytic reaction on adsorption is extremely important in analyzing the kinetics for the overall rate of a zeolite-catalyzed reaction. We have already met this subject in Chapter 2 when analyzing the basis of the Sabatier principle. A proper understanding of adsorption effects is essential for establishing a theory of zeolite catalysis that predicts the dependence of kinetics on zeolite-micropore shape and connectivity. [Pg.195]

In the first chapter, Bates and van Santen summarize the theoretical foundations of catalysis in acidic zeolites. Being the most important crystalline materials used as catalysts, zeolites have been the obvious starting point for applications of theory to catalysis by solids and surfaces. Impressive progress has been made in the application of theory to account for transport, sorption, and reaction in zeolites, and the comparisons with experimental results indicate some marked successes as well as opportunities for improving both the theoretical and experimental foundations. [Pg.532]

We extend our imderstanding of the concepts of chemical bonding and reactivity learned in Chapter 3 on metals and Chapter 4 on zeolites to catalysis over metal oxides and metal sulfides in Chapter 5. The featmes that lead to the generation of surface acidity and basicity are described via simple electrostatic bonding theory concepts that were initially introduced by Pauling. The acidity of the material and its application to heterogeneous catalysis are sensitive to the presence of water or other protic solvents. We explicitly examine the effects of the reaction medium in which the reaction is carried out. In addition, we compare and contrast the differences between liquid and solid acids. We subsequently describe the influence of covalent contributions to the bonding in oxides and transition to a discussion on the factors that control selective oxidation. [Pg.10]


See other pages where Zeolite catalysis theory reaction is mentioned: [Pg.61]    [Pg.373]    [Pg.15]    [Pg.359]    [Pg.10]    [Pg.537]    [Pg.192]    [Pg.133]    [Pg.174]    [Pg.184]    [Pg.760]    [Pg.70]    [Pg.9]    [Pg.265]   
See also in sourсe #XX -- [ Pg.400 ]




SEARCH



Catalysis theories

Zeolite catalysis theory

© 2024 chempedia.info