Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

With aquo complexes

This section concentrates on physical and chemical properties, and deals mainly with aquo complexes. The intention is to focus on trends, particularly in relation to the Periodic Table, which will not be apparent in later volumes with their metal-oriented arrangement. Trends in stability constants and in kinetic properties, both substitution and redox, of aquo ions are covered in Chapters 7 and 9 in Volume 1. [Pg.305]

In an aquo-complex, loss of protons from the coordinated water molecules can occur, as with hydrated non-transition metal ions (p. 45). To prevent proton loss by aquo complexes, therefore, acid must usually be added. It is for these conditions that redox potentials in Chapter 4 are usually quoted. Thus, in acid solutions, we have... [Pg.367]

In the presence of appropriate ligands, the values may be affected sufficiently to make Cu(l) stable but since the likely aquo-complex which Cu(I) would form is [Cu(H20)2], with only two water ligands, the (hypothetical) hydration energy of Cu is therefore much less than that of the higher charged, more strongly aquated [Cu(H20)e]. ... [Pg.414]

Tin(II) chlorides are similarly complex (Fig. 10.5). In the gas phase, SnCh forms bent molecules, but the crystalline material (mp 246°, bp 623°) has a layer structure with chains of comer-shared trigonal pyramidal SnClsl groups. The dihydrate also has a 3-coordinated structure with only I of the H2O molecules directly bonded to the Sn (Fig. I0.5c) the neutral aquo complexes are arranged in double layers with the second H2O molecules interleaved between them to form a two-dimensional H-bonded network... [Pg.379]

With few exceptions chiral Lewis acids are usually moisture-sensitive and require anhydrous conditions, but bench-stable aquo complexes such as [Cu(S,S)-t-Bu-box)(H20)2](SbF6)2 were found to promote the Diels-Alder reaction as effectively as the anhydrous copper reagent. [Pg.28]

Complexes with oxygen-donor ligands can be isolated as solids. The hydrated salts, Hg2(N03)2 2 H20 and Hg2(C104)2 -4 H20 both contain the aquo complex ion I ... [Pg.514]

Iron is the most abundant, useful, and important of all metals. For example, in the 70-kg human, there is approximately 4.2 g of iron. It can exist in the 0, I, II, III, and IV oxidation states, although the II and III ions are most common. Numerous complexes of the ferrous and ferric states are available. The Fe(II) and Fe(III) aquo complexes have vastly different pAa values of 9.5 and 2.2, respectively. Iron is found predominantly as Fe (92%) with smaller abundances of Fe (6%), Fe (2.2%), and Fe (0.3%). Fe is highly useful for spectroscopic studies because it has a nuclear spin of. There has been speculation that life originated at the surface of iron-sulfide precipitants such as pyrite or greigite that could have caused autocatalytic reactions leading to the first metabolic pathways (2, 3). [Pg.284]

No j3-bromo- or iodoalkyl complexes have yet been isolated. The reaction of vicinal dibromides or diiodides with [Co (CN)j] , [Co(CN)5H], or a Co(I)-DMG complex merely gives the olefin 32, 75,105,109,161), though kinetic evidence was obtained for the intermediate formation of the j8-bromo complex in the reaction of [Co"(CN)5] with a,j8-dibromopropionate and a,/3-dibromosuccinate (75). It is interesting that the pentacyanide produced is the bromo or iodo, and not the aquo, complex 32, 75), which suggests that the decomposition may involve a cis rather than a trans elimination of Co—X. The /3-chloroethyl complex can be prepared by tbe reaction of [Co(CN)5H]3- with CICH2CH2I 105). [Pg.410]

It is salutary to read the comment, At the time when I became interested in the reactions of coordination compounds the formula of not a single aquo complex was known with certainty, made by Taube in a recent review (364). In marked contrast, this review is predominantly concerned with the intimate detail of the mechanisms of sol-... [Pg.75]

CO3 species was formed and the X-ray structure solved. It is thought that the carbonate species forms on reaction with water, which was problematic in the selected strategy, as water was produced in the formation of the dialkyl carbonates. Other problems included compound solubility and the stability of the monoalkyl carbonate complex. Van Eldik and co-workers also carried out a detailed kinetic study of the hydration of carbon dioxide and the dehydration of bicarbonate both in the presence and absence of the zinc complex of 1,5,9-triazacyclododecane (12[ane]N3). The zinc hydroxo form is shown to catalyze the hydration reaction and only the aquo complex catalyzes the dehydration of bicarbonate. Kinetic data including second order rate constants were discussed in reference to other model systems and the enzyme carbonic anhy-drase.459 The zinc complex of the tetraamine 1,4,7,10-tetraazacyclododecane (cyclen) was also studied as a catalyst for these reactions in aqueous solution and comparison of activity suggests formation of a bidentate bicarbonate intermediate inhibits the catalytic activity. Van Eldik concludes that a unidentate bicarbonate intermediate is most likely to the active species in the enzyme carbonic anhydrase.460... [Pg.1185]

Adsorption of Ag on the surface of PdO is also an interesting option offered by colloidal oxide synthesis. Silver is a well-known promoter for the improvement of catalytic properties, primarily selectivity, in various reactions such as hydrogenation of polyunsaturated compounds." The more stable oxidation state of silver is -F1 Aquo soluble precursors are silver nitrate (halide precursors are aU insoluble), and some organics such as acetate or oxalate with limited solubility may also be used." Ag" " is a d ° ion and can easily form linear AgL2 type complexes according to crystal field theory. Nevertheless, even for a concentrated solution of AgNOs, Ag+ does not form aquo complexes." Although a solvation sphere surrounds the cation, no metal-water chemical bonds have been observed. [Pg.278]


See other pages where With aquo complexes is mentioned: [Pg.76]    [Pg.433]    [Pg.149]    [Pg.76]    [Pg.433]    [Pg.149]    [Pg.605]    [Pg.59]    [Pg.76]    [Pg.908]    [Pg.118]    [Pg.231]    [Pg.233]    [Pg.380]    [Pg.345]    [Pg.422]    [Pg.117]    [Pg.9]    [Pg.48]    [Pg.66]    [Pg.228]    [Pg.233]    [Pg.134]    [Pg.69]    [Pg.560]    [Pg.465]    [Pg.112]    [Pg.279]    [Pg.157]    [Pg.170]    [Pg.146]    [Pg.183]    [Pg.202]    [Pg.202]    [Pg.207]    [Pg.111]   
See also in sourсe #XX -- [ Pg.58 ]




SEARCH



Aquo complex

© 2024 chempedia.info