Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wines, aroma bitter compounds

While oxidation of phenolic compounds induces colour changes in the must and wine, and the formation of acrid and bitter substances, other constituents of juice and wine, such as compounds related to aroma, are also oxidised (Peynaud, 1984). [Pg.225]

Wine is one of the most complex and interesting matrices for a number of reasons. It is composed of volatile compounds, some of them responsible for the odor, and nonvolatile compounds which cause taste sensations, such as sweetness (sugars), sourness (organic acids), bitterness (polyphenols), and saltiness (mineral substances Rapp and Mandary, 1986). With a few exceptions, those compounds need to be present in levels of 1%, or even more, to influence taste. Generally, the volatile components can be perceived in much lower concentrations, since our organs are extremely sensitive to certain aroma substances (Rapp et ah, 1986). Carbohydrates (monosaccharides, disaccharides, and polysaccharides), peptides, proteins, vitamins, and mineral substances are among the other wine constituents. [Pg.215]

As well as fruity and buttery aromas, MLF has also been associated with other characteristic aromas such as floral, roasted, vanilla, sweet, woody, smoked, bitter, honey, etc. (Flenick-Kling 1993 Sauvageot and Vivier 1997). However, further studies are required to be able to relate the wine characteristics that are modified during malolactic fermentation with the production and/or degradation of a specific chemical compound by wine lactic acid bacteria. With this information, the winemaker can choose the best strain of lactic acid bacteria to obtain wine with a specific aroma or flavour. [Pg.42]

Mannoproteins are complex hydrocolloids released from yeast cell walls during autolysis (Goncalves et al., 2002 Charpentier et al., 2004). According to Feuillat (2003), mannoproteins are important to wine quality as these contribute to protein and tartrate stability, interact with aroma compounds, decrease the astringency and bitterness of tannins, and increase the body of wine. For instance, Dupin et al. (2000) reported that mannoproteins prevent protein haze formation. Using a model wine. Lubbers et al. (1994) noted that yeast cell walls bound volatile aroma compounds, especially those more hydrophobic, and could potentially change the sensory characteristics of wines through losses of these aromas. [Pg.30]


See other pages where Wines, aroma bitter compounds is mentioned: [Pg.235]    [Pg.1120]    [Pg.45]    [Pg.1442]    [Pg.530]    [Pg.167]    [Pg.414]    [Pg.422]   
See also in sourсe #XX -- [ Pg.640 ]




SEARCH



Aroma compounds

Aroma, wine

Bitter

Bitter compounds

Bitterness

Bitterness compounds

© 2024 chempedia.info