Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wavelengths ultrasonic

For a longitudinal disturbance of wavelength 12 pm, the droplets have a mean diameter of about 3-4 pm. These very fine droplets are ideal for ICP/MS and can be swept into the plasma flame by a flow of argon gas. Unlike pneumatic forms of nebulizer in which the relative velocities of the liquid and gas are most important in determining droplet size, the flow of gas in the ultrasonic nebulizer plays no part in the formation of the aerosol and serves merely as the droplet carrier. [Pg.148]

As ultrasonic frequency increases, the acoustic field is more restricted above an ultrasonic transducer. Roughly speaking, when the wavelength of ultrasound (2 = c/f, where c is the sound velocity in the liquid and/is the ultrasonic frequency) is much smaller than the radius of the transducer, the acoustic field is restricted above the transducer. It should be noted that the sound velocity in a bubbly liquid is smaller or occasionally larger than that in liquid without bubbles [87, 88]. [Pg.22]

Pressure waves of the same nature as sound waves but of greater frequency, i.e., shorter wavelength, and therefore inaudible. Ultrasonic waves have been used for the detection of ply separations and other voids in rubber-textile composites such as tyres, and for thickness measurement of coatings, etc., where access is possible from only one side. [Pg.68]

For short wave vectors (or long wavelengths) corresponding to waves in the acoustic or ultrasonic range, eq. (8.17) reduces to... [Pg.236]

Ultrasonic atomization is sometimes also termed capillary-wave atomization. In its most common form, 142 a thin film of a molten metal is atomized by the vibrations of the surface on which it flows. Standing waves are induced in the thin film by an oscillator that vibrates vertically to the film surface at ultrasonic frequencies. The liquid metal film is broken up at the antinodes along the surface into fine droplets once the amplitude of the capillary wave exceeds a certain value. The most-frequent diameter of the droplets generated is approximately one fourth of the wavelength of the capillary wave,1 421 and thus decreases with increasing frequency. [Pg.113]

Analytical and empirical correlations for droplet sizes generated by ultrasonic atomization are listed in Table 4.14 for an overview. In these correlations, Dm is the median droplet diameter, X is the wavelength of capillary waves, co0 is the operating frequency, a is the amplitude, UL0 is the liquid velocity at the nozzle exit in USWA, /Jmax is the maximum sound pressure, and Us is the speed of sound in gas. Most of the analytical correlations are derived on the basis of the capillary wave theory. Experimental observations revealed that the mean droplet size generated from thin liquid films on... [Pg.276]

Fig. 7. MR detection of ultrasonic waves oscillating at 515 kHz. (a) Phase image of a phantom without insonation. (b) Phase image with 40 W peak power insonation. In the NMR sequence 50,000 cycles of synchronized sine-shaped motion-sensitizing gradient were applied. Arrows indicate the null-gradient positions of the dedicated gradient coil system. Wavelength is around 2.9 mm and peak matter displacement is around 120 nm. From Ref. 30, reprinted by permission of Wiley-Liss, Inc., a subsidiary of John Wiley Sons, Inc. Fig. 7. MR detection of ultrasonic waves oscillating at 515 kHz. (a) Phase image of a phantom without insonation. (b) Phase image with 40 W peak power insonation. In the NMR sequence 50,000 cycles of synchronized sine-shaped motion-sensitizing gradient were applied. Arrows indicate the null-gradient positions of the dedicated gradient coil system. Wavelength is around 2.9 mm and peak matter displacement is around 120 nm. From Ref. 30, reprinted by permission of Wiley-Liss, Inc., a subsidiary of John Wiley Sons, Inc.
Photoluminescence spectroscopy is used to analyze the electronic properties of semiconducting CNTs [64]. The emission wavelength is particularly sensitive to the tube diameter [65] and chemical defects [66], However, a more dedicated sample preparation is required in order to eliminate van der Waals and charge transfer interactions between bundled CNTs. This can be done via ultrasonication or treatment of the bundles with surfactants that separate individual CNTs and suppress interactions between them [67]. [Pg.13]

Fig. 13.20. Optical heterodyne force microscopy (OHFM) and its application to a copper strip of width 500 nm, thickness 350 nm, on a silicon substrate, with subsequent chemical vapour deposition (CVD) of a silicon oxide layer followed by polishing and evaporation of a chromium layer of uniform thickness 100 nm and flatness better than 10 nm (a) amplitude (b) phase 2.5 [im x 2.5 m. Ultrasonic vibration at fi = 4.190 MHz was applied to the cantilever light of wavelength 830 nm was chopped at fo = 4.193 MHz and focused through the tip to a spot of diameter 2 im with incident mean power 0.5 mW the cantilever resonant frequency was 38 kHz. The non-linear tip-sample interaction generates vibrations of the cantilever at the difference frequency f2 — f = 3 kHz (Tomoda et al. 2003). Fig. 13.20. Optical heterodyne force microscopy (OHFM) and its application to a copper strip of width 500 nm, thickness 350 nm, on a silicon substrate, with subsequent chemical vapour deposition (CVD) of a silicon oxide layer followed by polishing and evaporation of a chromium layer of uniform thickness 100 nm and flatness better than 10 nm (a) amplitude (b) phase 2.5 [im x 2.5 m. Ultrasonic vibration at fi = 4.190 MHz was applied to the cantilever light of wavelength 830 nm was chopped at fo = 4.193 MHz and focused through the tip to a spot of diameter 2 im with incident mean power 0.5 mW the cantilever resonant frequency was 38 kHz. The non-linear tip-sample interaction generates vibrations of the cantilever at the difference frequency f2 — f = 3 kHz (Tomoda et al. 2003).
When the first edition was published in 1992, the resolution of the acoustic microscope techniques used at the time was controlled by the wavelength. In practice the frequency-dependent attenuation of the acoustic wave in the coupling fluid sets a lower limit to the wavelength, and therefore to the resolution, of about 1 pm for routine applications. Since then scanning probe techniques with nanometre scale resolution have been developed along the lines of the atomic force microscope. This has resulted in the development of the ultrasonic force microscopy techniques, in which the sample is excited by... [Pg.392]

Ultrasonic waves are a mechanical disturbance which passes thru the medium by the progressive displacement of particles. The particles do not travel in the direction of the source but vibrate about their mean fixed position. The amplitude of the wave is the distance from peak to peak and therefore is the maximum displacement of a particle in the medium. The period (T) is the time required to complete one cycle and the frequency (f) refers to the number of cycles per unit time. The unit of frequency is the Hertz (Hz, one cycle per second) and it is the reciprocal of the period. The rate at which sound travels thru the medium is the velocity (c, meters per second). The wavelength (X, meters), is the distance between adjacent cycles. Therefore, the relation,between wavelength, velocity and frequency is given by... [Pg.46]

Sensitivity is the ability of an ultrasonic test system to detect the presence of small defects. One of the factors affecting sensitivity is the wavelength of the signal in that the shorter the wavelength the higher the sensitivity... [Pg.47]


See other pages where Wavelengths ultrasonic is mentioned: [Pg.105]    [Pg.158]    [Pg.694]    [Pg.896]    [Pg.156]    [Pg.122]    [Pg.226]    [Pg.120]    [Pg.30]    [Pg.337]    [Pg.164]    [Pg.282]    [Pg.194]    [Pg.22]    [Pg.116]    [Pg.175]    [Pg.435]    [Pg.477]    [Pg.54]    [Pg.55]    [Pg.56]    [Pg.114]    [Pg.168]    [Pg.277]    [Pg.372]    [Pg.340]    [Pg.271]    [Pg.116]    [Pg.161]    [Pg.261]    [Pg.122]    [Pg.290]    [Pg.314]    [Pg.384]    [Pg.395]    [Pg.233]    [Pg.156]   
See also in sourсe #XX -- [ Pg.68 , Pg.77 ]




SEARCH



Wavelength, ultrasonic system

© 2024 chempedia.info