Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wang-Uhlenbeck method

The interest in fluctuations and in the stochastic methods for describing them has grown enormously in the last few decades. The number of articles scattered in the literature of various disciplines must run to thousands, and special journals are devoted to the subject. Yet the physicist or chemist who wants to become acquainted with the field cannot easily find a suitable introduction. He reads the seminal articles of Wang and Uhlenbeck and of Chandrasekhar, which are almost forty years old, and he culls some useful information from the books of Feller, Bharucha-Reid, Stratonovich, and a few others. Apart from that he is confronted with a forbidding mass of mathematical literature, much of which is of little relevance to his needs. This book is an attempt to fill this gap in the literature. [Pg.465]

The second method is the diffusion equation or Fokker-PIanck method. To quote Wang and Uhlenbeck [10], macroscopically, for an ensem-... [Pg.298]

In order to discuss the evaluation of the thermal conductivity of mixtures containing polyatomic components it is useful to treat the results of the Wang Chang and Uhlenbeck expansion method and that of Thijsse separately. The former is well established but, in its full form, is sufficiently complicated that it has seldom been used for calculations (see. [Pg.59]


See other pages where Wang-Uhlenbeck method is mentioned: [Pg.271]    [Pg.290]    [Pg.10]    [Pg.271]    [Pg.290]    [Pg.10]    [Pg.274]    [Pg.2452]    [Pg.1489]    [Pg.31]   
See also in sourсe #XX -- [ Pg.271 , Pg.290 ]




SEARCH



Wang Method

© 2024 chempedia.info