Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vulcanisation peroxide-curing sulfur

Deformulation of vulcanised rubbers and rubber compounds at Dunlop (1988) is given in Scheme 2.3. Schnecko and Angerer [72] have reviewed the effectiveness of NMR, MS, TG and DSC for the analysis of rubber and rubber compounds containing curing agents, fillers, accelerators and other additives. PyGC has been widely used for the analysis of elastomers, e.g. in the determination of the vulcanisation mode (peroxide or sulfur) of natural rubbers. [Pg.36]

In general, most of the problems encountered in the study of the chemistry of the sulfur vulcanisation of elastomers are also encountered in the study of peroxide-curing. In comparison with sulfur vulcanisation only a limited number of spectroscopic studies on peroxide-curing have been published. [Pg.210]

Peroxide vulcanisation of EPDM is growing in popularity because of enhanced ageing resistance. A comparison of sulfur and peroxide cure systems for EPDM is shown in Table 32 (381). [Pg.29]

The mechanism of peroxide crosslinking of elastomers is much less intricate than that of sulfur vulcanisation. Crosslinking is initiated by the thermal decomposition of a peroxide, which is the overall cure rate determining step. Next, the active radicals thus formed abstract hydrogen from elastomer chains to form macroradicals. Finally, crosslinking results either from the combination of two macroradicals or from the addition of a macroradical to an unsaturated moiety of another primary elastomer chain. [Pg.225]

There is wide variety of vulcanisation agents and methods available for crosslinking rubber materials including peroxide, radiation, urethane, amine-boranes, and sulfur compounds [20]. Because of its superior mechanical and elastic properties, ease in use, and low cost, sulfur vulcanisation is the most widely used. Although vulcanisation with sulfur alone is not practical compared to the accelerated sulfur vulcanisation in terms of the slower cure rate and inferior physical properties of the end products, many fundamental aspects can be learned from such a simply formulated vulcanisation system. The use of sulfur alone to cure NR is typically inefficient, i.e., requiring 45-55 sulfur atoms per crosslink [21], and tends to produce a large portion of intramolecular (cyclic) crosslinks. However, such ineffective crosslink structures are of interest in the understanding of complex nature of vulcanisation reactions. [Pg.327]

The 13C NMR crosslink density results were compared with the crosslink density obtained by the mechanical measurements. In the determination of the crosslink density by mechanical methods, the contributions of the topological constraints on the results were neglected and the density was expressed as G/2RT. The 13C and mechanical-crosslink densities were obtained for both sulfur and dicumyl peroxide (DCP)-cured samples to ensure the effect of wasted crosslinks (pendent or intramolecular type sulfurisations), which are expected in the typical sulfur-vulcanisation of NR. In the major range of crosslink densities, the crosslink densities for those two systems are described by the same linear function with a slope of 1.0. Based on these observations, it is shown that the crosslink density of the sulfur-vulcanised NR as determined by 13C is identical with the true crosslink density, and the influence of the wasted or ineffective crosslinks (pendent and cyclic crosslinks) and chain ends is negligible. However, this conclusion seems to be only valid if the effect of topological constraints or entrapped entanglements on the mechanical modulus is negligible which is rarely the case in real systems. [Pg.330]


See other pages where Vulcanisation peroxide-curing sulfur is mentioned: [Pg.207]    [Pg.209]    [Pg.211]    [Pg.237]    [Pg.238]    [Pg.79]    [Pg.234]    [Pg.35]    [Pg.35]    [Pg.321]    [Pg.167]    [Pg.23]   


SEARCH



PEROXIDE VULCANISATION

Sulfur cures

Sulfur curing

Sulfur peroxides

VULCANISED

Vulcanisation

Vulcanising

© 2024 chempedia.info