Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Volume Defects and Precipitates

Point defects are only notionally zero dimensional. It is apparent that the atoms around a point defect must relax (move) in response to the defect, and as such the defect occupies a volume of crystal. Atomistic simulations have shown that such volumes of disturbed matrix can be considerable. Moreover, these calculations show that the clustering of point defects is of equal importance. These defect clusters can be small, amounting to a few defects only, or extended over many atoms in non-stoichiometric materials (Section 4.4). [Pg.128]

In a similar fashion, the line and planar defects described above are all, strictly speaking, volume defects. For the sake of convenience it is often easiest to ignore this point of view, but it is of importance in real structures, and dislocation tangles, for instance, which certainly affect the mechanical properties of crystals, should be viewed in terms of volume defects. [Pg.128]

Apart from these, there are volume defects that cannot conveniently be described in any other terms. The most important of these consist of regions of an impurity phase—precipitates—in the matrix of a material (Fig. 3.39). Precipitates form in a variety of circumstances. Phases that are stable at high temperatures may not be stable at low temperatures, and decreasing the temperature slowly will frequently lead to the formation of precipitates of a new crystal structure within the matrix of the old. Glasses, for example, are inherently unstable, and a glass may slowly recrystallize. In this case precipitates of crystalline material will appear in the noncrystalline matrix. [Pg.128]


See other pages where Volume Defects and Precipitates is mentioned: [Pg.128]   


SEARCH



Volume defect

Volume defects precipitates

© 2024 chempedia.info