Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Viscosity nematics

These results suggest that for high-viscosity nematics, defects can be packed together so tightly under even modest shearing that a defect-saturated tight texture is achieved, from... [Pg.545]

Furtlier details can be found elsewhere [20, 78, 82 and 84]. An approach to tire dynamics of nematics based on analysis of microscopic correlation fimctions has also been presented [85]. Various combinations of elements of tire viscosity tensor of a nematic define tire so-called Leslie coefficients [20, 84]. [Pg.2558]

C. Characteristically, these nematic melts show the persistence of orientational order under the influence of elongational flow fields which result in low melt viscosities under typical fiber formation conditions even at high molecular weights. [Pg.68]

Molecules of nematic Hquid crystals also are aligned in flow fields which results in a viscosity that is lower than that of the isotropic Hquid the rod-shaped molecules easily stream past one another when oriented. Flow may be impeded if an electric or magnetic field is appHed to counter the flow orientation the viscosity then becomes an anisotropic property. [Pg.192]

The polyamides are soluble in high strength sulfuric acid or in mixtures of hexamethylphosphoramide, /V, /V- dim ethyl acetam i de and LiCl. In the latter, compHcated relationships exist between solvent composition and the temperature at which the Hquid crystal phase forms. The polyamide solutions show an abmpt decrease in viscosity which is characteristic of mesophase formation when a critical volume fraction of polymer ( ) is exceeded. The viscosity may decrease, however, in the Hquid crystal phase if the molecular ordering allows the rod-shaped entities to gHde past one another more easily despite the higher concentration. The Hquid crystal phase is optically anisotropic and the texture is nematic. The nematic texture can be transformed to a chiral nematic texture by adding chiral species as a dopant or incorporating a chiral unit in the main chain as a copolymer (30). [Pg.202]

Miscibility or compatibility provided by the compatibilizer or TLCP itself can affect the dimensional stability of in situ composites. The feature of ultra-high modulus and low viscosity melt of a nematic liquid crystalline polymer is suitable to induce greater dimensional stability in the composites. For drawn amorphous polymers, if the formed articles are exposed to sufficiently high temperatures, the extended chains are retracted by the entropic driving force of the stretched backbone, similar to the contraction of the stretched rubber network [61,62]. The presence of filler in the extruded articles significantly reduces the total extent of recoil. This can be attributed to the orientation of the fibers in the direction of drawing, which may act as a constraint for a certain amount of polymeric material surrounding them. [Pg.598]

The formation of ECC is not only an extension of a portion of the macromolecule but also a mutual orientational ordering of these portions belonging to different molecules (intermolecular crystallization), as a result of which the structure of ECC is similar to that of a nematic liquid crystal. After the melt is supercooled below the melting temperature, the processes of mutual orientation related to the displacement of molecules virtually cannot occur because the viscosity of the system drastically increases and the chain mobility decreases. Hence, the state of one-dimensional orientational order should be already attained in the melt. During crystallization this ordering ensures the aggregation of extended portions to crystals of the ECC type fixed by intermolecular interactons on cooling. [Pg.230]

Characterization439 Inherent viscosity before and after solid-sate polymerization is 0.46 and 3.20 dL/g, respectively (0.5 g/dL in pentafluorophenol at 25°C). DSC Tg = 135°C, Tm = 317°C. A copolyester of similar composition440 exhibited a liquid crystalline behavior with crystal-nematic and nematic-isotropic transition temperatures at 307 and 410°C, respectively (measured by DSC and hot-stage polarizing microscopy). The high-resolution solid-state 13C NMR study of a copolyester with a composition corresponding to z2/zi = 1-35 has been reported.441... [Pg.114]

The viscosity of thermotropic liquid crystals increases following the sequenee nematic< smectic A < smectic C. [Pg.132]

Six viscosity coefficients required for a description of the dynamics of an incompressible, nematic liquid crystal. [Pg.128]

If one follows the solution viscosity in concentrated sulfuric acid with increasing polymer concentration, then one observes first a rise, afterwards, however, an abrupt decrease (about 5 to 15%, depending on the type of polymers and the experimental conditions). This transition is identical with the transformation of an optical isotropic to an optical anisotropic liquid crystalline solution with nematic behavior. Such solutions in the state of rest are weakly clouded and become opalescent when they are stirred they show birefringence, i.e., they depolarize linear polarized light. The two phases, formed at the critical concentration, can be separated by centrifugation to an isotropic and an anisotropic phase. A high amount of anisotropic phase is desirable for the fiber properties. This can be obtained by variation of the molecular weight, the solvent, the temperature, and the polymer concentration. [Pg.288]

It can be safely predicted that applications of liquid crystals will expand in the future to more and more sophisticated areas of electronics. Potential applications of ferroelectric liquid crystals (e.g. fast shutters, complex multiplexed displays) are particularly exciting. The only LC that can show ferroelectric property is the chiral smectic C. Viable ferroelectric displays have however not yet materialized. Antifer-roelectric phases may also have good potential in display applications. Supertwisted nematic displays of twist artgles of around 240° and materials with low viscosity which respond relatively fast, have found considerable application. Another development is the polymer dispersed liquid crystal display in which small nematic droplets ( 2 gm in diameter) are formed in a polymer matrix. Liquid crystalline elastomers with novel physical properties would have many applications. [Pg.465]

The equilibrium value of a in the nematic phase can be determined by minimizing AF. With Eq. (19) for AF from the scaled particle theory, S has been computed as a function of c, and the results are shown by the curves in Fig. 12. Here, the molecular parameters Lc and N were estimated from the viscosity average molecular weight Mv along with ML and q listed in Table 1, and d was chosen to be 1.40 nm (PBLG), 1.15 nm (PHIC), and 1.08 nm (PYPt), as in the comparison of the experimental phase boundary concentrations with the scaled particle theory (cf. Table 2). [Pg.118]


See other pages where Viscosity nematics is mentioned: [Pg.76]    [Pg.544]    [Pg.2]    [Pg.8]    [Pg.494]    [Pg.72]    [Pg.2029]    [Pg.22]    [Pg.259]    [Pg.76]    [Pg.544]    [Pg.2]    [Pg.8]    [Pg.494]    [Pg.72]    [Pg.2029]    [Pg.22]    [Pg.259]    [Pg.240]    [Pg.2553]    [Pg.66]    [Pg.199]    [Pg.203]    [Pg.77]    [Pg.296]    [Pg.585]    [Pg.233]    [Pg.233]    [Pg.113]    [Pg.11]    [Pg.65]    [Pg.66]    [Pg.262]    [Pg.184]    [Pg.201]    [Pg.465]    [Pg.129]    [Pg.219]    [Pg.158]    [Pg.103]    [Pg.257]    [Pg.130]    [Pg.143]    [Pg.31]    [Pg.94]    [Pg.147]   
See also in sourсe #XX -- [ Pg.2 ]

See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Flow and viscosity studies in nematic liquid crystals

Linear viscosity in the nematic phase

Measurements of Viscosities in Nematics

Nematic liquid crystals viscosity

Nematic viscosities measurements

Nematic viscosities restrictions

Nematic viscosity

Nematic viscosity

Nematics flow/viscosity

The Nematic Viscosities

Viscosities of nematics

Viscosity chiral nematics

Viscosity coefficient, nematic liquid crystal

Viscosity coefficients nematics

© 2024 chempedia.info