Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinylidene complexes reactivity

Reaction of the carbonyl complex 26 with the mercury diazomethane 27 gives the highly reactive 17e intermediate carbyne complex 28 which dimerizes to form the / -biscarbyne complex 30. In this case, the intermediate terminal carbyne complex 28 has been trapped by reaction with the mercury diazomethane 29 to form the cyclic vinylidene complex 31. 31 was also characterized by a single crystal X-ray structure analysis. [Pg.179]

Preparation and Stoichiometric Reactivity of Mononuclear Metal Vinylidene Complexes... [Pg.1]

Attempts to produce vinylidene in the free state result in rapid reversion to ethyne, with a lifetime of 10 ° s [1]. As with many reactive organic intermediates, however, vinylidene can be stabilized by complexation to a metal center, using the lone pair for coordination and thus preventing the reversion to ethyne. Most 1-aIkynes can be converted into the analogous vinylidene complexes by simple reactions with appropriate transition metal substrates (Equation 1.2) ... [Pg.1]

The stoichiometric reactivity of metal-vinylidene complexes will be covered in the following sequence ... [Pg.20]

The number of known, isolated and characterized complexes depends strongly on the length of the chain and drastically decreases with the number of carbon atoms in the chain. A great number of vinylidene complexes of many metals, with different terminal substituents R and various co-ligands have been synthesized and the reactivity has been studied extensively. At present, the solid-state structure of more than 230 vinylidene complexes has been determined by X-ray structure analyses. The number of isolated allenylidene complexes is somewhat smaller. [Pg.99]

Species (A) and (B) constitute the main class of unsaturated carbenes and play important roles as reactive intermediates due to the very electron-deficient carbon Cl [1]. Once they are coordinated with an electron-rich transition metal, metal vinylidene (C) and allenylidene (D) complexes are formed (Scheme 4.1). Since the first example of mononuclear vinylidene complexes was reported by King and Saran in 1972 [2] and isolated and structurally characterized by Ibers and Kirchner in 1974 [3], transition metal vinylidene and allenylidene complexes have attracted considerable interest because of their role in carbon-heteroatom and carbon-carbon bond-forming reactions as well as alkene and enyne metathesis [4]. Over the last three decades, many reviews [4—18] have been contributed on various aspects of the chemistry of metal vinylidene and allenylidene complexes. A number of theoretical studies have also been carried out [19-43]. However, a review of the theoretical aspects of the metal vinylidene and allenylidene complexes is very limited [44]. This chapter will cover theoretical aspects of metal vinylidene and allenylidene complexes. The following aspects vdll be reviewed ... [Pg.129]

In this chapter, we first analyzed the electronic structures of metal vinylidene and allenylidene complexes. The electronic structures allow us to understand the reactivities of these complexes. For metal vinylidene complexes of the Fischer-type, nucleophilic attack usually occurs at the a-carbon and electrophilic attack at the P-carbon. For the corresponding metal allenylidenes, electrophilic attack occurs at the P-carbon and/or the metal center. Then we briefly reviewed the theoretical study of the barriers ofrotation ofvinylidene ligands in various flve-coordinate complexes M (X) C1(=C=CHR)L2 (M = Os, Ru L = phosphine). The study showed that 7t-acceptor ligands (X), electron-withdrawing substituents and lighter metals gave smaller barriers. [Pg.152]

In this chapter, we summarized the theoretical studies carried out on metal vinylidene complexes. Special emphasis was placed on aspects of their electronic structures, reactivities and their roles in organic reactions. Theoretical studies on the related metal allenylidene complexes have been quite limited. More theoretical studies on various aspects of these complexes, particularly on their metathesis reactivities, are clearly necessary. [Pg.153]

Highly reactive organic vinylidene and allenylidene species can be stabilized upon coordination to a metal center [1]. In 1979, Bruce et al. [2] reported the first ruthenium vinylidene complex from phenylacetylene and [RuCpCl(PPh3)2] in the presence of NH4PF6. Following this report, various mthenium vinylidene complexes have been isolated and their physical and chemical properties have been extensively elucidated [3]. As the a-carbon of ruthenium vinylidenes and the a and y-carbon of ruthenium allenylidenes are electrophilic in nature [4], the direct formation of ruthenium vinylidene and ruthenium allenylidene species, respectively, from terminal alkynes and propargylic alcohols provides easy access to numerous catalytic reactions since nucleophilic addition at these carbons is a viable route for new catalysis (Scheme 6.1). [Pg.193]

The ability to harness alkynes as effective precursors of reactive metal vinylidenes in catalysis depends on rapid alkyne-to-vinylidene interconversion [1]. This process has been studied experimentally and computationally for [MC1(PR3)2] (M = Rh, Ir, Scheme 9.1) [2]. Starting from the 7t-alkyne complex 1, oxidative addition is proposed to give a transient hydridoacetylide complex (3) vhich can undergo intramolecular 1,3-H-shift to provide a vinylidene complex (S). Main-group atoms presumably migrate via a similar mechanism. For iridium, intermediates of type 3 have been directly observed [3]. Section 9.3 describes the use of an alternate alkylative approach for the formation of rhodium vinylidene intermediates bearing two carbon-substituents (alkenylidenes). [Pg.280]

Reactions of mononuclear vinylidene complexes with other reactive metal complexes to give binuclear //-vinylidene complexes have been described above. Addition of Fe2(CO)c, to Mn(C=CHPh)(CO)2(i/-C5H5) also gives 31, by addition of a CO group to the a-carbon structural data are consistent with the delocalized formulation (31b), with its obvious resemblances to trimethylenemethane (60) ... [Pg.76]

Consiglio et al. have recently reported a surprising mode of reactivity for the vinylidene complexes of type 76. Reaction of these complexes with diazomethane results in the insertion of CH2 into the C -H bond in good... [Pg.45]

The vast majority of work exploring the reactivity of ruthenium viny-lidene complexes has focused on the attack of alcohols at the electrophilic a carbon of monosubstituted vinylidenes, resulting in the formation of ruthenium alkoxycarbene complexes. Bruce and co-workers have determined, for example, that the phenylvinylidene complex 80 is slowly transformed in refluxing MeOH to the methoxycarbene complex 82 in good yield (73,83). The mechanism for this reaction must involve initial attack of the alcohol at the electrophilic Ca to form a transient vinyl intermediate 81 which is rapidly protonated at the nucleophilic Cp, generating the product carbene 82 [Eq. (79)]. In contrast to monosubstituted vinylidene complexes, disubstituted vinylidene complexes are generally unreactive to nucleophiles even the relatively small dimethylvinylidene complex 83 shows no reaction with MeOH after 70 hours at reflux [Eq. (80)]. [Pg.48]

As discussed earlier, the chemistry of the vinylidene complexes is influenced by steric constraints imposed by the flanking phosphine groups. The steric congestion about the ruthenium center has an even more pronounced effect on reactivity at Ca in carbene complexes. The crystal structure of complex 96 (61) provides an excellent example of the pro-... [Pg.54]

Most efforts to explore the reactivity of ruthenium carbene complexes have employed the alkoxycarbene species so readily synthesized from the inter- or intramolecular reaction of vinylidene complexes with alcohols. These electrophilic alkoxycarbene complexes exhibit only limited reactivity at Ca, primarily with hydride reagents. For example, treatment of the 2-oxacyclopentylidene complex 97 with NaAlH2(OCH2CH2OMe)2 affords the neutral 2-tetrahydrofuranyl complex (98) [Eq. (89)] (55), as was anticipated from similar reductions of iron carbene complexes (87). [Pg.55]

The formation of complexes 109 has been shown to proceed via a vinylidene ruthenium intermediate (112), which has been indirectly isolated by protonation of an acetylide-ruthenium complex (112). Arene ruthenium vinylidene complexes 113 appear to be much more reactive than their isoelectronic (C5H5)(R3P)2Ru=C=CHR+ complexes (63,66). [Pg.183]


See other pages where Vinylidene complexes reactivity is mentioned: [Pg.82]    [Pg.648]    [Pg.15]    [Pg.73]    [Pg.74]    [Pg.217]    [Pg.18]    [Pg.126]    [Pg.40]    [Pg.50]    [Pg.369]    [Pg.2039]    [Pg.4094]   
See also in sourсe #XX -- [ Pg.498 ]




SEARCH



Complex Reactive

Vinylidene

Vinylidene complexes

Vinylidenes

© 2024 chempedia.info