Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl acetate polymerization thermodynamics

Prior to Harwood s work, the existence of a Bootstrap effect in copolymerization was considered but rejected after the failure of efforts to correlate polymer-solvent interaction parameters with observed solvent effects. Kamachi, for instance, estimated the interaction between polymer and solvent by calculating the difference between their solubility parameters. He found that while there was some correlation between polymer-solvent interaction parameters and observed solvent effects for methyl methacrylate, for vinyl acetate there was none. However, it should be noted that evidence for radical-solvent complexes in vinyl acetate systems is fairly strong (see Section 3), so a rejection of a generalized Bootstrap model on the basis of evidence from vinyl acetate polymerization is perhaps unwise. Kratochvil et al." investigated the possible influence of preferential solvation in copolymerizations and concluded that, for systems with weak non-specific interactions, such as STY-MMA, the effect of preferential solvation on kinetics was probably comparable to the experimental error in determining the rate of polymerization ( 5%). Later, Maxwell et al." also concluded that the origin of the Bootstrap effect was not likely to be bulk monomer-polymer thermodynamics since, for a variety of monomers, Flory-Huggins theory predicts that the monomer ratios in the monomer-polymer phase would be equal to that in the bulk phase. [Pg.793]

Azad and Fitch (5) investigated the effect of low molecular weight hydrocarbon additives on the formation of colloidafr particles in suspension polymerization of methyl methacrylate and vinyl acetate. It was found that the additives n-octane, n-dodecane, n-octadecane, n-tetracosane and mineral oil exerted a thermodynamic affect depending upon water-solubility and molecular weight. Since these effects on emulsion polymerization have not been considered by the earlier investigators, we have chosen n-pentane and ethyl benzene as additives with limited water-solubility and n-octadecane, and n-tetracosane as water-insoluble ones. Seeded emulsion polymerization was chosen so that the number of particles could be kept constant throughout the experiments and only the effect of the other parameters on the rate could be determined. [Pg.357]


See other pages where Vinyl acetate polymerization thermodynamics is mentioned: [Pg.168]    [Pg.183]    [Pg.295]    [Pg.195]    [Pg.510]    [Pg.553]    [Pg.295]    [Pg.277]    [Pg.31]    [Pg.182]   
See also in sourсe #XX -- [ Pg.215 ]




SEARCH



Acetalization, thermodynamics

Acetals polymerization

Acetate polymerization, vinyl

Polymerization thermodynamics

Polymerization vinylic

Vinyl polymerization

© 2024 chempedia.info