Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vibrational state analysis

Yang-Mills field, 203-205 Vibrational state analysis ... [Pg.103]

St. Lemont, G.W. Flynn, Vibrational state analysis of electronic-to-vibrational energy transfer processes. Annu. Rev. Phys. Chem. 28, 261 (1977)... [Pg.724]

This lineshape analysis also implies tliat electron-transfer rates should be vibrational-state dependent, which has been observed experimentally [44]- Spin-orbit relaxation has also been identified as an important factor in controlling tire identity of botli electron and vibrational-state distributions in radiationless ET reactions. [Pg.2986]

Also, rotational state resolution of cross-sections can be obtained by employing a coherent state analysis [51] for the situation of weak coupling between rotational and vibrational degrees of freedom. A suitable rotational coherent state can be expressed as... [Pg.244]

Steady-state analysis techniques are based on acquiring vibration data when the machine or process system is operating at a fixed speed and specific operating parameters. For example, a variable-speed machine-train is evaluated at constant speed rather than over its speed range. [Pg.686]

Steady-state analysis can be compared to a still photograph of the vibration profile generated by a machine or process system. Snapshots of the vibration profile are acquired by the vibration analyzer and stored for analysis. While the snapshots can be used to evaluate the relative operating condition of simple machine-trains, they do not provide a true picture of the dynamics of either the machine or its vibration profile. [Pg.686]

Steady-state analysis totally ignores variations in the vibration level or vibration generated by transient events... [Pg.686]

In order to determine the physical mechanism of initial ET including other rapid kinetics in photosynthetic RCs, it is necessary to construct a vibronic model that comprises the electronic and vibrational states of the system. It is also important to take into account temperature effect in both experiments and theories. In particular, we should stress that most of MO calculations carried out for RCs are based on the crystallographic structures. However, the structure at room temperature may be different from that obtained from the X-ray analysis,... [Pg.73]

The number of fundamental vibrational modes of a molecule is equal to the number of degrees of vibrational freedom. For a nonlinear molecule of N atoms, 3N - 6 degrees of vibrational freedom exist. Hence, 3N - 6 fundamental vibrational modes. Six degrees of freedom are subtracted from a nonlinear molecule since (1) three coordinates are required to locate the molecule in space, and (2) an additional three coordinates are required to describe the orientation of the molecule based upon the three coordinates defining the position of the molecule in space. For a linear molecule, 3N - 5 fundamental vibrational modes are possible since only two degrees of rotational freedom exist. Thus, in a total vibrational analysis of a molecule by complementary IR and Raman techniques, 31V - 6 or 3N - 5 vibrational frequencies should be observed. It must be kept in mind that the fundamental modes of vibration of a molecule are described as transitions from one vibration state (energy level) to another (n = 1 in Eq. (2), Fig. 2). Sometimes, additional vibrational frequencies are detected in an IR and/or Raman spectrum. These additional absorption bands are due to forbidden transitions that occur and are described in the section on near-IR theory. Additionally, not all vibrational bands may be observed since some fundamental vibrations may be too weak to observe or give rise to overtone and/or combination bands (discussed later in the chapter). [Pg.63]

Abstract. The development of modern spectroscopic techniques and efficient computational methods have allowed a detailed investigation of highly excited vibrational states of small polyatomic molecules. As excitation energy increases, molecular motion becomes chaotic and nonlinear techniques can be applied to their analysis. The corresponding spectra get also complicated, but some interesting low resolution features can be understood simply in terms of classical periodic motions. In this chapter we describe some techniques to systematically construct quantum wave functions localized on specific periodic orbits, and analyze their main characteristics. [Pg.122]

A summary of the symmetry analysis for the various isotopomers is presented in Table 5 where, in keeping with the conclusions of the general analysis, only ground vibrational states of the reactants are considered. Inspection of Table 5 indicates that isotopic substitution that preserves the CO2 centrosymmetry lifts the restriction based on I while preserving the restriction based on the e parity label state. Because C substitution will always preserve molecular centrosymmetry, the symmetry analysis predicts that ( 02)2 clusters containing a C isotope could show at most a formation-rate enhancement of a factor of two above that of (002)2- Also, because this symmetry restriction is independent of the detailed nature of the quantum states of the COj ions, the C SIKIE is predicted to be independent of the way in which the ion is prepared (i.e., E. Conversely, Table 5 indicates that when the COj centrosymmetry is removed, there are no symmetry restrictions to cluster formation. The extent to which the formation of (002)2 containing a ion will be enhanced above that of ( 62)2 depends on the e/f parity label state distribution of the CO2 ions, which, as was demonstrated in the O2/O2 study,can depend on E. ... [Pg.182]

The first attempt to explain the characteristic properties of molecular spectra in terms of the quantum mechanical equation of motion was undertaken by Born and Oppenheimer. The method presented in their famous paper of 1927 forms the theoretical background of the present analysis. The discussion of vibronic spectra is based on a model that reflects the discovered hierarchy of molecular energy levels. In most cases for molecules, there is a pattern followed in which each electronic state has an infrastructure built of vibrational energy levels, and in turn each vibrational state consists of rotational levels. In accordance with this scheme the total energy, has three distinct components of different orders of magnitude,... [Pg.149]

Excited-state Mg atoms react with methane and other alkanes via H atom abstraction in the gas phase (equation 1). By studying the vibrational states of the MgH product, information on the mechanism has been inferred. It has been found that regardless of the alkane, RH (and thus the C—H bond strength), the vibrational state distributions are essentially identical. This suggests that long-lived vibrationaUy excited [RMgH] complexes are not intermediates for equation 1 in the gas phase. The situation is quite different for excited-state Mg atoms reacting with methane under matrix conditions, where the insertion product (equation 2) is sufficiently stable for analysis via infrared spectroscopy ". Calcium atoms have been shown to insert into the C—H bonds of cycloalkanes. ... [Pg.157]

Fia. VII-4.—Some observed energy levels for the carbon monoxide molecule, as determined by the analysis of spectra. The first thirteen vibrational levels are shown for the normal electronic state of the molecule, and the rotational levels are Bhown for the lowest vibrational state. [Pg.600]


See other pages where Vibrational state analysis is mentioned: [Pg.54]    [Pg.240]    [Pg.242]    [Pg.348]    [Pg.297]    [Pg.310]    [Pg.101]    [Pg.1]    [Pg.50]    [Pg.199]    [Pg.199]    [Pg.114]    [Pg.59]    [Pg.344]    [Pg.346]    [Pg.60]    [Pg.60]    [Pg.49]    [Pg.363]    [Pg.275]    [Pg.77]    [Pg.411]    [Pg.286]    [Pg.321]    [Pg.195]    [Pg.186]    [Pg.214]    [Pg.107]    [Pg.62]   


SEARCH



Vibration analysis

Vibrational analysis

Vibrational state analysis effects

Vibrational state analysis systems

© 2024 chempedia.info