Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Variable area meters—rotameters

RP16.4 Nomenclature and Terminology for Extension Type Variable Area Meters (Rotameters). [Pg.172]

Variable-Area Meters Variable-area meters, which are also called rotameters, offer popular and inexpensive flow measurement devices. These meters employ a float inside a tube that has an internal cross-sectional area that increases with distance upward in the flow path through the tube. As the flow rate increases, the float rises in the tube to provide a larger area for the flowing fluid to pass. [Pg.14]

Other sensors which are described in Volume 1 (Sections 6.3.7-6.3.9) are the variable area meter, the notch or weir, the hot wire anemometer, the electromagnetic flowmeter and the positive displacement meter. Some of these flowmeters are relatively less suitable for producing signals which can be transmitted to the control room for display (e.g. weir, rotameter) and others are used in more specialist or limited applications (e.g. magnetic flowmeter, hot wire anemometer). The major characteristics of different types of flow sensor are summarised in Table 6.1. Brief descriptions follow of the principles underlying the more important types of flowmeter not described in Volume 1. In many instances such flow sensors are taking the place of those more traditional meters which rely upon pressure drop measurement. This is for reasons of versatility, energy conservation and convenience. [Pg.439]

The last flow meter that we will address is the rotameter. This meter is relatively inexpensive and its method of measurement is based on the variation of the area through which the liquid flows. The area is varied by means of a float mounted inside the cylinder of the meter. The bore of this cylinder is tapered. With the unit mounted upright, the smaller portion of the bore is at the bottom and the larger is at the top. When there is no flow through the unit, the float is at the bottom. As liquid is admitted to the unit through the bottom, the float is forced upward and, because the bore is tapered in increasing cross section toward the top, the area through which the liquid flows is increased as the flow rate is increased. The calibration in rates of flow is etched directly on the side of the cylinder. Because the method of measurement is based on the variation of the area, this meter is called a variable-area meter. In addition, because the float obstructs the flow of the liquid, the meter is an intrusive meter. [Pg.214]

Full-bore meters include variable-head meters such as venturi and orifice meters and variable-area meters such as rotameters. These will be described in some detail. Briefer descriptions are given of other full-bore measuring devices V-element, magnetic, vortex shedding, turbine and positive-displacement meters, ultrasonic meters, and mass flow devices such as Coriolis and thermal flowmeters. [Pg.214]

AREA METERS ROTAMETERS. In the orifice, nozzle, or venturi, the variation of flow rate through a constant area generates a variable pressure drop, which is related to the flow rate. Another class of meters, called area meters, consists of devices in which the pressure drop is constant, or nearly so, and the area through which the fluid flows varies with flow rate. The area is related, through proper calibration, to the flow rate. [Pg.223]

Rotameter A registered name for a type of variable area flow meter used to measure the rate of flow of fluids. It consists of a tapered tube and contains a float. The elevation of the float in the tube gives a measure of the rate of flow and is read from a calibrated scale on the tube. [Pg.332]

Flow transmitters. Flow measurements are made in high-pressure lines by sensing the pressure drop across a calibrated orifice or venturi, or by the transmitting variable-area type of flowmeter. The latter meter resembles a Rotameter with float position transmitted electrically. It has the advantage of being an in-line element but is not readily applicable to large flows. [Pg.459]


See other pages where Variable area meters—rotameters is mentioned: [Pg.257]    [Pg.201]    [Pg.27]    [Pg.257]    [Pg.201]    [Pg.27]    [Pg.110]    [Pg.447]    [Pg.3864]    [Pg.438]    [Pg.201]    [Pg.426]    [Pg.426]    [Pg.400]   


SEARCH



Area Meters

Rotameter

Rotameters

Variable Area

Variable area meters

© 2024 chempedia.info