Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultimate choice of reactor conditions

The use of steam in the styrene process above is an example of how an engineer can exercise a degree of ingenuity in reactor design. The advantages conferred by [Pg.14]

As the styrene process shows, it is not generally feasible to operate a reactor with a conversion per pass equal to the equilibrium conversion. The rate of a chemical reaction decreases as equilibrium is approached, so that the equilibrium conversion can only be attained if either the reactor is very large or the reaction unusually fast. The size of reactor required to give any particular conversion, which of course cannot exceed the maximum conversion predicted from the equilibrium constant, is calculated from the kinetics of the reaction. For this purpose we need quantitative data on the rate of reaction, and the rate equations which describe the kinetics are considered in the following section. [Pg.15]

If there are two or more reactants involved in the reaction, both can be converted completely in a single pass only if they are fed to the reactor in the stoichiometric proportion. In many cases, the stoichiometric ratio of reactants may be the best, but in some instances, where one reactant (especially water or air) is very much cheaper than the other, it may be economically advantageous to use it in excess. For a given size of reactor, the object is to increase the conversion of the more costly reactant, possibly at the expense of a substantial decrease in the fraction of the cheaper reactant converted. Examination of the kinetics of the reaction is required to determine whether this can be achieved, and to calculate quantitatively the effects of varying the reactant ratio. Another and perhaps more common reason for departing from the stoichiometric proportions of reactants is to minimise the amount of byproducts formed. This question is discussed further in Section 1.10.4. [Pg.15]

Ultimately, the final choice of the temperature, pressure, reactant ratio and conversion at which the reactor will operate depends on an assessment of the overall economics of the process. This will take into account the cost of the reactants, the cost of separating the products and the costs associated with any recycle streams. It should include all the various operating costs and capital costs of reactor and plant. In the course of making this economic assessment, a whole series of calculations of operating conditions, final conversion and reactor size may be performed with the aid of a computer, provided that the data are available. Each of these sets of conditions may be technically feasible, but the one chosen will be that which gives the maximum profitability for the project as a whole. [Pg.15]


See other pages where Ultimate choice of reactor conditions is mentioned: [Pg.14]   


SEARCH



Choice of reactor

Reactor choice

Reactor conditions

Ultimate Conditions

© 2024 chempedia.info