Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

UAG codon

Figure 10 Alteration of the genetic code for incorporation of non-natural amino acids, (a) In nonsense suppression, the stop codon UAG is decoded by a non-natural tRNA with the anticodon CUA. In vivo decoding of the UAG codon by this tRNA is in competition with termination of protein synthesis by release factor 1 (RFl). Purified in vitro translation systems allow omission of RF1 from the reaction mixture, (b) A new codon-anticodon pair can be created using four-base codons such as GGGU. Crystal structures of these codon-anticodon complexes in the ribosomal decoding center revealed that the C in the third anticodon position interacts with both the third and fourth codon position (purple line) while the extra A in the anticodon loop does not contact the codon.(c) Non-natural base pairs also allow creation of new codon-anticodon pairs. Shown here is the interaction of the base Y with either base X or (hydrogen bonds are indicated by red dashes). Figure 10 Alteration of the genetic code for incorporation of non-natural amino acids, (a) In nonsense suppression, the stop codon UAG is decoded by a non-natural tRNA with the anticodon CUA. In vivo decoding of the UAG codon by this tRNA is in competition with termination of protein synthesis by release factor 1 (RFl). Purified in vitro translation systems allow omission of RF1 from the reaction mixture, (b) A new codon-anticodon pair can be created using four-base codons such as GGGU. Crystal structures of these codon-anticodon complexes in the ribosomal decoding center revealed that the C in the third anticodon position interacts with both the third and fourth codon position (purple line) while the extra A in the anticodon loop does not contact the codon.(c) Non-natural base pairs also allow creation of new codon-anticodon pairs. Shown here is the interaction of the base Y with either base X or (hydrogen bonds are indicated by red dashes).
As the mRNA is read in the 5 to the 3 direction, the AUG and UAG codons would start and stop peptide synthesis ... [Pg.356]

A) The conversion of a UAG codon to UAA in mRNA would result in the incorporation of an incorrect amino acid into the polypeptide chain... [Pg.301]

The second key step for the expansion of the biosynthesizing system to introduce nonnatural amino acids is the expansion of the genetic codes. Schultz [38] and Chamberlin [39] first assigned an amber (UAG) stop codon to a nonnatural amino acid (aa ). By adding an aa -tRNA with a CUA anticodon as a suppressor of the amber codon, they successfully introduced the nonnatural amino acid at that position. Since then, the amber suppression method has been employed by a number of researchers. This method is advantageous in that an unsuccessful decoding of the UAG codon automatically leads to... [Pg.284]

In addition to codons for ammo acids there are start and stop codons Protein biosynthesis begins at a start codon and ends at a stop codon of mRNA The start codon IS the nucleotide triplet AUG which is also the codon for methionine The stop codons are UAA UAG and UGA... [Pg.1175]

The mRNA is read continuously from a start codon (AUG) to a termination codon (UAA, UAG, UGA). [Pg.372]

Fig. 8.4 Outline of the main events in protein synthesis initiation, elongation, translocation and termination. AUG is an initiation codon on the mRNA it codes for Af-fomiylmelhionine and initiates the formation of the 70S rihosome. UAG is a termination codon it does not code for any amino acid and brings about termination of protein synthesis. Fig. 8.4 Outline of the main events in protein synthesis initiation, elongation, translocation and termination. AUG is an initiation codon on the mRNA it codes for Af-fomiylmelhionine and initiates the formation of the 70S rihosome. UAG is a termination codon it does not code for any amino acid and brings about termination of protein synthesis.
Upon encountering a stop codon on the mRNA, the ribosome will halt incorporation of further amino acids into the polypeptide as there is no tRNA complementary to a stop codon (UAG, UGA, UAA). In order to liberate the polypeptide, the ester bond between the peptide and the tRNA residing in the P site has to be hydrolyzed — a reaction that is also catalyzed in the peptidyltransferase center. It is critical for protein synthesis that peptide release is tightly coupled to the presence of a stop codon in the decoding center to avoid premature termination resulting in shortened, nonfunctional proteins. Both functions, recognizing the stop codon and triggering... [Pg.372]

Genetic code Start AUG (also codes for Met) Stop UAG,UGA,UAA Unambiguous (1 codon = 1 amino acid) Redundant (1 amino acid >1 codon) often differ at base 3 ... [Pg.61]

Deactivation of an RF is feasible, however, in prokaryotes. In E. coli, three RFs are involved in the termination process, and there is a degree of codon specificity for two of them. RFl recognizes the UAG and UAA stop codons, while RF2 recognizes the UGA and UAA stop codons [16, 42]. RFS, which is not codon specific, stimulates the activity of the other two. Thus, if RF 1 is deactivated, UAA and UGA remain functional termination codons, but UAG should no longer signal for termination of protein synthesis. To test this hypothesis, the Chamberlin lab investigated a mutant strain of E. coli that produces a faulty RFl [29]. [Pg.90]

The final step in protein biosynthesis is chain termination. Natural mRNA molecules contain termination codons UAA, UGA, or UAG There are no tRNAs that have anticodons which are complementary to these codons. When the growing peptide chain encounters one of these termination codons, the peptidyl-tRNAis transferred to water instead of another aminoacyl-tRNA. The peptidyl-tRNA is hydrolyzed to free the completed protein and the tRNA. Chain termination completes protein synthesis. [Pg.174]

Termination Three codons (UAA, UAG and UGA) are stop codons which do not code for any amino acid but, instead of attaching to a tRNA molecule, they bind a protein release factor. When one of these factors is encountered by the ribosome, peptidyl transfer is aborted, the completed polypeptide chain released by hydrolysis and the ribosome subunits separate. The N-terminal methionine unit is then removed from the polypeptide chain. [Pg.468]

When one of the three stop codons (UAA, UAG, or UGA) appears at the A site, termination starts. [Pg.252]

The three termination or stop codons, UAA, UAG, and UGA, do not specify amino acids and thus do not base pair with specific tRNAs. [Pg.168]

The ribosome can carry two aminoacyl-tRNAs simultaneously. In the chain elongation stage, the growing polypeptide is carried on one of these tRNAs. The chain is transferred to the second tRNA, which adds its amino acid to the growing peptide, and displaces the first tRNA. The ribosome then moves one codon along the mRNA to allow the next to be read. Termination of protein synthesis involves the release of the completed polypeptide, expulsion of the last tRNA, and dissociation of the ribosome from the mRNA. This is signaled by specific termination codons (UAA, UAG, or UGA) in the mRNA and requires the participation of various release factors. [Pg.71]


See other pages where UAG codon is mentioned: [Pg.598]    [Pg.85]    [Pg.35]    [Pg.1893]    [Pg.737]    [Pg.52]    [Pg.288]    [Pg.68]    [Pg.68]    [Pg.77]    [Pg.77]    [Pg.127]    [Pg.102]    [Pg.474]    [Pg.100]    [Pg.598]    [Pg.85]    [Pg.35]    [Pg.1893]    [Pg.737]    [Pg.52]    [Pg.288]    [Pg.68]    [Pg.68]    [Pg.77]    [Pg.77]    [Pg.127]    [Pg.102]    [Pg.474]    [Pg.100]    [Pg.1178]    [Pg.206]    [Pg.1178]    [Pg.370]    [Pg.5]    [Pg.96]    [Pg.254]    [Pg.355]    [Pg.373]    [Pg.376]    [Pg.589]    [Pg.597]    [Pg.600]    [Pg.43]    [Pg.56]    [Pg.89]    [Pg.250]    [Pg.140]   
See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Codon

© 2024 chempedia.info