Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transmitter release, calcium-sensitive

Schematic illustration of a generalized cholinergic junction (not to scale). Choline is transported into the presynaptic nerve terminal by a sodium-dependent choline transporter (CHT). This transporter can be inhibited by hemicholinium drugs. In the cytoplasm, acetylcholine is synthesized from choline and acetyl -A (AcCoA) by the enzyme choline acetyltransferase (ChAT). Acetylcholine is then transported into the storage vesicle by a second carrier, the vesicle-associated transporter (VAT), which can be inhibited by vesamicol. Peptides (P), adenosine triphosphate (ATP), and proteoglycan are also stored in the vesicle. Release of transmitter occurs when voltage-sensitive calcium channels in the terminal membrane are opened, allowing an influx of calcium. The resulting increase in intracellular calcium causes fusion of vesicles with the surface membrane and exocytotic expulsion of acetylcholine and cotransmitters into the junctional cleft (see text). This step can he blocked by botulinum toxin. Acetylcholine s action is terminated by metabolism by the enzyme acetylcholinesterase. Receptors on the presynaptic nerve ending modulate transmitter release. SNAPs, synaptosome-associated proteins VAMPs, vesicle-associated membrane proteins. Schematic illustration of a generalized cholinergic junction (not to scale). Choline is transported into the presynaptic nerve terminal by a sodium-dependent choline transporter (CHT). This transporter can be inhibited by hemicholinium drugs. In the cytoplasm, acetylcholine is synthesized from choline and acetyl -A (AcCoA) by the enzyme choline acetyltransferase (ChAT). Acetylcholine is then transported into the storage vesicle by a second carrier, the vesicle-associated transporter (VAT), which can be inhibited by vesamicol. Peptides (P), adenosine triphosphate (ATP), and proteoglycan are also stored in the vesicle. Release of transmitter occurs when voltage-sensitive calcium channels in the terminal membrane are opened, allowing an influx of calcium. The resulting increase in intracellular calcium causes fusion of vesicles with the surface membrane and exocytotic expulsion of acetylcholine and cotransmitters into the junctional cleft (see text). This step can he blocked by botulinum toxin. Acetylcholine s action is terminated by metabolism by the enzyme acetylcholinesterase. Receptors on the presynaptic nerve ending modulate transmitter release. SNAPs, synaptosome-associated proteins VAMPs, vesicle-associated membrane proteins.
The aminoglycosides have a magnesium-like effect, acting prejunctionaUy to reduce transmitter release and post-junctionally to increase transmitter release they also reduce postjunctional sensitivity to acetylcholine. In most cases their effects can be reversed, partly at least by calcium or 4-aminopyridine. Tobramycin is thought also to have a direct effect on muscle. [Pg.2493]

Schematic diagram of a generalized noradrenergic junction (not to scale). Tyrosine is transported into the noradrenergic ending or varicosity by a sodium-dependent carrier (A). Tyrosine is converted to dopamine (see Figure 6-5 for details), which is transported into the vesicle by a carrier (B) that can be blocked by reserpine. The same carrier transports norepinephrine (NE) and several other amines into these granules. Dopamine is converted to NE in the vesicle by dopamine-B-hydroxylase. Release of transmitter occurs when an action potential opens voltage-sensitive calcium channels and increases intracellular calcium. Fusion of vesicles with the surface membrane results in expulsion of norepinephrine, cotransmitters, and dopamine-13-hydroxylase. Schematic diagram of a generalized noradrenergic junction (not to scale). Tyrosine is transported into the noradrenergic ending or varicosity by a sodium-dependent carrier (A). Tyrosine is converted to dopamine (see Figure 6-5 for details), which is transported into the vesicle by a carrier (B) that can be blocked by reserpine. The same carrier transports norepinephrine (NE) and several other amines into these granules. Dopamine is converted to NE in the vesicle by dopamine-B-hydroxylase. Release of transmitter occurs when an action potential opens voltage-sensitive calcium channels and increases intracellular calcium. Fusion of vesicles with the surface membrane results in expulsion of norepinephrine, cotransmitters, and dopamine-13-hydroxylase.
An action potential in the presynaptic fiber propagates into the synaptic terminal and activates voltage-sensitive calcium channels in the membrane of the terminal (Figure 6-3). The calcium channels responsible for the release of transmitter are generally resistant to the calcium channelblocking agents discussed in Chapter 12 Vasodilators the Treatment of Angina Pectoris (verapamil, etc) but are sensitive to blockade by certain marine toxins and metal ions (Tables 12-4 and 21-1). Calcium flows into the terminal, and the increase in intraterminal calcium concentration promotes the fusion of synaptic vesicles with the presynaptic membrane. The transmitter contained in the vesicles is released into the synaptic cleft and diffuses to the receptors on the postsynaptic... [Pg.492]


See other pages where Transmitter release, calcium-sensitive is mentioned: [Pg.464]    [Pg.943]    [Pg.219]    [Pg.943]    [Pg.97]    [Pg.118]    [Pg.340]    [Pg.437]    [Pg.721]    [Pg.261]    [Pg.166]    [Pg.349]    [Pg.402]    [Pg.391]    [Pg.276]    [Pg.329]    [Pg.225]    [Pg.9]    [Pg.348]    [Pg.249]    [Pg.115]    [Pg.453]    [Pg.266]    [Pg.293]    [Pg.266]    [Pg.199]    [Pg.89]    [Pg.273]    [Pg.461]    [Pg.222]    [Pg.714]    [Pg.21]   


SEARCH



Calcium release

Transmittance

Transmittancy

Transmittivity

© 2024 chempedia.info