Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transmission electron microscopy elastic interaction

Schematic models for the expanded structure of bile acid-phosphatidylcholine mixed micelles are shown in Fig. 2B. The original model was proposed by Small in 1967 (S36). In this model the mixed micelle consisted of a phospholipid bilayer disk surrounded on its perimeter by bile acid molecules, which were oriented with their hydrophilic surhices in contact with aqueous solvent and their hydrophobic sur ces interacting with the hydrocarbon chains of the phosphohpid molecules. This model has recently been revised, based on further studies of mixed micelles using quasi-elastic light scattering spectroscopy (M20). In a new model for the molecular structure of bile acid-phospholipid mixed micelles. Mazer et al. (M20) propose a mixed disk, in which bile acids are found not only on the perimeter of phospholipid bilayers, but also incorporated within their interior in high concentrations (Fig. 2B). The size of these mixed micelles was estimated to be as high as 200 to 400 A in radius in some solutions, and disk-shaped particles in this size range were observed by transmission electron microscopy (M20). Micellar aggregates similar in size and structure to those found in model bile solutions have been demonstrated in dog bile (M22). Schematic models for the expanded structure of bile acid-phosphatidylcholine mixed micelles are shown in Fig. 2B. The original model was proposed by Small in 1967 (S36). In this model the mixed micelle consisted of a phospholipid bilayer disk surrounded on its perimeter by bile acid molecules, which were oriented with their hydrophilic surhices in contact with aqueous solvent and their hydrophobic sur ces interacting with the hydrocarbon chains of the phosphohpid molecules. This model has recently been revised, based on further studies of mixed micelles using quasi-elastic light scattering spectroscopy (M20). In a new model for the molecular structure of bile acid-phospholipid mixed micelles. Mazer et al. (M20) propose a mixed disk, in which bile acids are found not only on the perimeter of phospholipid bilayers, but also incorporated within their interior in high concentrations (Fig. 2B). The size of these mixed micelles was estimated to be as high as 200 to 400 A in radius in some solutions, and disk-shaped particles in this size range were observed by transmission electron microscopy (M20). Micellar aggregates similar in size and structure to those found in model bile solutions have been demonstrated in dog bile (M22).
In this study we have investigated the structural and interaction parameters of ternary water/octane/CiaEs system by means of SAXS. Phase behavior of this system was studied by Kahlweit et al. [9]. This system shows interesting phase behavior (Fig. 1). One can study the structures of low-temperature microemulsion (LTM) phase, middle-temperature lamellar (MTL) phase and high-temperature microemulsion (HTM) phase by changing temperature only, provided that the sample contains approximately more than 12 wt% of surfactant at equal volume fraction of water and oil. Bodet et al. have clarified the structural evolution of this system by means of pulsed-field gradient spin-echo NMR, quasi-elastic light scattering and freeze-fracture transmission electron microscopy [10]. Local structure of the bilayer and monolayer of the same system was also studied by Strey et al. [11]. Recently, we have studied the mechanism of the phase transition [12]. [Pg.103]


See other pages where Transmission electron microscopy elastic interaction is mentioned: [Pg.633]    [Pg.618]    [Pg.149]    [Pg.327]    [Pg.56]    [Pg.142]    [Pg.285]    [Pg.561]    [Pg.562]    [Pg.214]    [Pg.214]    [Pg.190]    [Pg.341]    [Pg.650]    [Pg.278]    [Pg.297]   
See also in sourсe #XX -- [ Pg.3140 ]




SEARCH



Elastic interactions

Elasticity electron

Elasticity electron microscopy

Electronic interactions

Electrons elastically

Microscopy interaction

Transmission electron microscopy

Transmission electronic microscopy

Transmission microscopy

© 2024 chempedia.info