Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition states participation

Complexes in which an increase in the coordination number at silicon is achieved by intramolecular ring closure of chelating groups are particularly interesting in relation to the stereochemistry of nucleophilic substitution at silicon. In these compounds the donor atom may play the role of a captive nucleophile , and the nature and behaviour of the intramolecularly coordinated species serve as models for the properties of the intermediates or transition states participating in the substitution processes. [Pg.1251]

Although nucleophilic participation at the transition state is slight it is enough to ensure that substitution proceeds with inversion of configuration... [Pg.683]

This proposal, however, has been criticized on the basis of transition state theory (74). Hydroperoxy radicals produced in reaction 23 or 24 readily participate in chain-terminating reactions (eq. 17) and are only weak hydrogen abstractors. When they succeed in abstracting hydrogen, they generate hydrogen peroxide ... [Pg.339]

Any reaction w4iich shows a major shift in transition-state structure over the substituent series would be expected to give a nonlinear Hammett plot, since a variation in the extent of resonance participation would then be expected. [Pg.214]

Evidently, since there is no appreciable rate acceleration, this participatimi is not very strong at the transition state. Nevertheless, the participation is strong enough to control stereochemistry. When mote nucleophilic solvents are used (e.g., acetic acid), participation is not observed, and the product is 100% of inverted configuration. [Pg.313]

Let us now return to the question of solvolysis and how it relates to the stracture under stable-ion conditions. To relate the structural data to solvolysis conditions, the primary issues that must be considered are the extent of solvent participation in the transition state and the nature of solvation of the cationic intermediate. The extent of solvent participation has been probed by comparison of solvolysis characteristics in trifluoroacetic acid with the solvolysis in acetic acid. The exo endo reactivity ratio in trifluoroacetic acid is 1120 1, compared to 280 1 in acetic acid. Whereas the endo isomer shows solvent sensitivity typical of normal secondary tosylates, the exx> isomer reveals a reduced sensitivity. This indicates that the transition state for solvolysis of the exo isomer possesses a greater degree of charge dispersal, which would be consistent with a bridged structure. This fact, along with the rate enhancement of the exo isomer, indicates that the c participation commences prior to the transition state being attained, so that it can be concluded that bridging is a characteristic of the solvolysis intermediate, as well as of the stable-ion structure. ... [Pg.332]

Another line of evidence that bridging is important in the transition state for solvolysis has to do with substituent effects for groups placed at C-4, C-5, C-6, and C-7 on the norbomyl system. The solvolysis rate is most strongly affected by C-6 substituents, and the exo isomer is more sensitive to these substituents than is the endo isomer. This implies that the transition state for solvolysis is especially sensitive to C-6 substituents, as would be ejqiected if the C(l)—C(6) bond participates in solvolysis. ... [Pg.332]

The transition state for the rapid hydrolysis of the monoanion has been depicted as involving an intramolecular general acid catalysis by the carboxylic acid group, with participation by the anionic carboxylate group, which becomes bound at the developing electrophilic center... [Pg.489]

Elementary step (Section 4.8) A step in a reaction mechanism in which each species shown in the equation for this step participates in the same transition state. An elementary step is characterized by a single transition state. [Pg.1282]

Three kinetically equivalent rate terms involving intramolecular participation are shown in Table 6-3 with representations of appropriate transition states (mechanisms). Differentiation among these possibilities can be difficult. [Pg.267]

The notion of concurrent SnI and Sn2 reactions has been invoked to account for kinetic observations in the presence of an added nucleophile and for heat capacities of activation,but the hypothesis is not strongly supported. Interpretations of borderline reactions in terms of one mechanism rather than two have been more widely accepted. Winstein et al. have proposed a classification of mechanisms according to the covalent participation by the solvent in the transition state of the rate-determining step. If such covalent interaction occurs, the reaction is assigned to the nucleophilic (N) class if covalent interaction is absent, the reaction is in the limiting (Lim) class. At their extremes these categories become equivalent to Sn and Sn , respectively, but the dividing line between Sn and Sn does not coincide with that between N and Lim. For example, a mass-law effect, which is evidence of an intermediate and therefore of the SnI mechanism, can be observed for some isopropyl compounds, but these appear to be in the N class in aqueous media. [Pg.429]

Evidence that the actual methylation of the anion can be divided into SnI, Eq. (3), and Sx2 types, Eq, (4), is provided by a whole series of investigations. " The terms S l and 8 2 must be taken to mean reactions with, respectively less or greater nucleophilic participation of the anion in the transition state. The importance of oriented ion pairs" in the solvents of low polarity frequently used in reactions involving diazomethanc, e.g., the ions formed by a diazoalkane and benzoic acid in ether, should be emphasized. The expression oriented ion pair means that, because of insufficient solvation, the ions are not individually solvated but exist as ion pairs within a solvent cage. The orientation within the ion pair is defined electrostatically, and this orientation fixes the path for the productdetermining step. Several indications (cf, foo otes 22-24) in the literature indicate the occurrence of carbonium ions and oriented ion pairs in Broensted-type equilibria of the type of Eq. (2). [Pg.247]

In the event, treatment of a rapidly stirred solution of 3 and sodium acetate in MeOH-tbO at 38 °C with PdCl2 results in the fomation of carpanone (1) in 46% yield. The ordered unimolecular transition state for the oxidative coupling reaction furnishes putative bis(quinodimethide) 2 stereoselectively. Once formed, 2 readily participates in an intramolecular Diels-Alder reaction4 to give carpanone (1). Two new rings and all five contiguous stereocenters are created in this spectacular sequential transformation.5... [Pg.97]

For most real systems, particularly those in solution, we must settle for less. The kinetic analysis will reveal the number of transition states. That is, from the rate equation one can count the number of elementary reactions participating in the reaction, discounting any very fast ones that may be needed for mass balance but not for the kinetic data. Each step in the reaction has its own transition state. The kinetic scheme will show whether these transition states occur in succession or in parallel and whether kinetically significant reaction intermediates arise at any stage. For a multistep process one sometimes refers to the transition state. Here the allusion is to the transition state for the rate-controlling step. [Pg.126]


See other pages where Transition states participation is mentioned: [Pg.301]    [Pg.398]    [Pg.159]    [Pg.301]    [Pg.398]    [Pg.159]    [Pg.375]    [Pg.378]    [Pg.1282]    [Pg.308]    [Pg.287]    [Pg.127]    [Pg.309]    [Pg.273]    [Pg.274]    [Pg.274]    [Pg.294]    [Pg.298]    [Pg.299]    [Pg.332]    [Pg.334]    [Pg.605]    [Pg.612]    [Pg.432]    [Pg.220]    [Pg.253]    [Pg.140]    [Pg.160]    [Pg.194]    [Pg.202]    [Pg.214]    [Pg.293]    [Pg.454]    [Pg.147]    [Pg.32]    [Pg.143]    [Pg.181]   


SEARCH



© 2024 chempedia.info