Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition state theory , applications

Gershinsky G and Poliak E 1995 Variational transition state theory application to a symmetric exchange in water J. Chem. Phys. 103 8501... [Pg.896]

Mills G, Jonsson H, Schenter GK. 1995. Reversible work transition state theory application to dissociative adsorption of hydrogen. Surf Sci 324 305-337. [Pg.127]

Poliak E 1990 Variational transition state theory for activated rate processes J. Chem. Phys. 93 1116 Poliak E 1991 Variational transition state theory for reactions in condensed phases J. Phys. Chem. 95 533 Frishman A and Poliak E 1992 Canonical variational transition state theory for dissipative systems application to generalized Langevin equations J. Chem. Phys. 96 8877... [Pg.897]

This is connnonly known as the transition state theory approximation to the rate constant. Note that all one needs to do to evaluate (A3.11.187) is to detennine the partition function of the reagents and transition state, which is a problem in statistical mechanics rather than dynamics. This makes transition state theory a very usefiil approach for many applications. However, what is left out are two potentially important effects, tiiimelling and barrier recrossing, bodi of which lead to CRTs that differ from the sum of step frmctions assumed in (A3.11.1831. [Pg.993]

Miller W H, Hernandez R, Moore C B and Polik W F A 1990 Transition state theory-based statistical distribution of unimolecular decay rates with application to unimolecular decomposition of formaldehyde J. Chem. Phys. 93 5657-66... [Pg.1043]

Equation (5-69) is an important result. It was first obtained by Marcus " in the context of electron-transfer reactions. Marcus derivation is completely different from the one given here. In electron transfer from one molecule (or ion) to another, no bonds are broken or formed, so the transition state theory does not seem to be applicable. Marcus assumed negligible orbital overlap in the electron-transfer transition state, but he later obtained the same equation for group transfer reactions requiring significant overlap. Many applications have been made to proton transfers and nucleophilic displacements. ... [Pg.227]

After an introductory chapter, phenomenological kinetics is treated in Chapters 2, 3, and 4. The theory of chemical kinetics, in the form most applicable to solution studies, is described in Chapter 5 and is used in subsequent chapters. The treatments of mechanistic interpretations of the transition state theory, structure-reactivity relationships, and solvent effects are more extensive than is usual in an introductory textbook. The book could serve as the basis of a one-semester course, and I hope that it also may be found useful for self-instruction. [Pg.487]

As such, it could be treated with the Eyring s transition state theory. When stated in general terms, the transition state theory is applicable to any physico-chemical process which is activated by thermal energy [94] ... [Pg.110]

Figure 22 shows an application of the present method to the H3 reaction system and the thermal rate constant is calculated. The final result with tunneling effects included agree well with the quantum mechanical transition state theory calculations, although the latter is not shown here. [Pg.143]

An example application of transition state theory is to simple gas-phase dissociations of a diatomic molecules such as CO... [Pg.111]

The classical approach for discussing adsorption states was through Lennard-Jones potential energy diagrams and for their desorption through the application of transition state theory. The essential assumption of this is that the reactants follow a potential energy surface where the products are separated from the reactants by a transition state. The concentration of the activated complex associated with the transition state is assumed to be in equilibrium... [Pg.13]

The thermodynamic formulation of the transition state theory is useful in considerations of reactions in solution when one is examining a particular class of reactions and wants to extrapolate kinetic data obtained for one reactant system to a second system in which the same function groups are thought to participate (see Section 7.4). For further discussion of the predictive applications of this approach and its limitations, consult the books by Benson (59) and Laidler (60). Laidler s kinetics text (61) and the classic by Glasstone, Laidler, and Eyring (54) contain additional useful background material. [Pg.118]

Second, in deriving Equation 16.2 from transition state theory, it is necessary to assume that the overall reaction proceeds on a molecular scale as a single elementary reaction or a series of elementary reactions (e.g., Lasaga, 1984 Nagy et al., 1991). In general, the elementary reactions that occur as a mineral dissolves and precipitates are not known. Thus, even though the form of Equation 16.2 is convenient and broadly applicable for explaining experimental results, it is not necessarily correct in the strictest sense. [Pg.236]

Garret, B. C. and Truhlar, D. G. Generalized transition state theory. Classical mechanical theory and applications to collinear reactions of hydrogen molecules, J.Phys.Chem., 83 (1979), 1052-1079... [Pg.349]

Application of the Kurz approach to CD-mediated reactions, whether they be accelerated or retarded, is straightforward (Tee, 1989), provided appropriate kinetic data are available. From the rate constants A u for the normal, uncatalysed reaction (2) and for the mediated ( catalysed ) reaction (k2 = kJKs) as in (3), application of simple transition state theory, in the manner shown above, leads to (9), where now Krs is the apparent dissociation constant of the transition state of the CD-mediated reaction (symbolized here as TS CD) into the transition state of the normal reaction (TS) and the CD. This constant and its logarithm, which is proportional to a free energy difference, is a valuable probe of the kinetic effects of CDs on reactions. [Pg.11]

At high temperatures and low pressures, the unimolecular reactions of interest may not be at their high-pressure limits, and observed rates may become influenced by rates of energy transfer. Under these conditions, the rate constant for unimolecular decomposition becomes pressure- (density)-dependent, and the canonical transition state theory would no longer be applicable. We shall discuss energy transfer limitations in detail later. [Pg.143]

In the absence of transport limitations, the processes of adsorption, surface diffusion, surface reaction, and desorption can be treated via the transition state theory (Baetzold and Somorjai, 1976 Zhdanov et al, 1988). For example, the application of the TST to a single site adsorption process,... [Pg.172]

In siunmary, although the application of detailed chemical kinetic modeling to heterogeneous reactions is possible, the effort needed is considerably more involved than in the gas-phase reactions. The thermochemistry of surfaces, clusters, and adsorbed species can be determined in a manner analogous to those associated with the gas-phase species. Similarly, rate parameters of heterogeneous elementary reactions can be estimated, via the application of the transition state theory, by determining the thermochemistry of saddle points on potential energy surfaces. [Pg.175]

Theoretical descriptions of absolute reaction rates in terms of the rate-limiting formation of an activated complex during the course of a reaction. Transition-state theory (pioneered by Eyring "", Pelzer and Wigner, and Evans and Polanyi ) has been enormously valuable, and beyond its application to chemical reactions, the theory applies to a wider spectrum of rate processes (eg., diffusion, flow of liquids, internal friction in large polymers, eta). Transition state theory assumes (1) that classical mechanics can be used to calculate trajectories over po-... [Pg.684]


See other pages where Transition state theory , applications is mentioned: [Pg.15]    [Pg.92]    [Pg.202]    [Pg.387]    [Pg.396]    [Pg.203]    [Pg.208]    [Pg.3]    [Pg.74]    [Pg.192]    [Pg.32]    [Pg.318]    [Pg.183]    [Pg.7]    [Pg.128]    [Pg.72]    [Pg.472]    [Pg.50]    [Pg.143]    [Pg.150]    [Pg.101]    [Pg.251]    [Pg.61]   
See also in sourсe #XX -- [ Pg.232 , Pg.233 , Pg.234 , Pg.593 ]

See also in sourсe #XX -- [ Pg.232 , Pg.233 , Pg.234 , Pg.593 ]




SEARCH



Applications theory

Transition applications

© 2024 chempedia.info