Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition state 1,3-dipolar cycloaddition

An elegant experimental and theoretical study on the influence of water on transition states of Huisgen 1,3-dipolar cycloadditions was reported by Butler and coworkers. The authors concluded that the polarity of the transition state in cycloadditions of phthalazinium ylides such as 52 (Fig. 11.17) with various olefins remains nearly the same in acetonitrile and 9 1 water-acetonitrile. A few representative preparative reactions were also outlined such as the example shown in Fig. 11.17. [Pg.362]

The regioselectivity of 1,3-dipolar cycloadditions can also be analyzed by MO calculations on transition-state models. For example, there are two possible regioisomers from the reaction of diazomethane and methyl vinyl ether, but only the 3-methoxy isomer is formed. [Pg.648]

In the 1,3-dipolar cycloaddition reactions of especially allyl anion type 1,3-dipoles with alkenes the formation of diastereomers has to be considered. In reactions of nitrones with a terminal alkene the nitrone can approach the alkene in an endo or an exo fashion giving rise to two different diastereomers. The nomenclature endo and exo is well known from the Diels-Alder reaction [3]. The endo isomer arises from the reaction in which the nitrogen atom of the dipole points in the same direction as the substituent of the alkene as outlined in Scheme 6.7. However, compared with the Diels-Alder reaction in which the endo transition state is stabilized by secondary 7t-orbital interactions, the actual interaction of the N-nitrone p -orbital with a vicinal p -orbital on the alkene, and thus the stabilization, is small [25]. The endojexo selectivity in the 1,3-dipolar cycloaddition reaction is therefore primarily controlled by the structure of the substrates or by a catalyst. [Pg.217]

The Lewis acid-catalyzed reaction of nitrone 21 with ethyl vinyl ether 22 (Scheme 8.8) was also investigated for BH3 and AlMe3 coordinated to 21 [32]. The presence of BH3 decreases the activation energy for the formation of 23 by 3.1 and 4.5 kcal mol to 9.6 kcal mol for the exoselective reaction and 11.6 kcal-mol for the endo-selective reaction, respectively, while the activation energy for the formation of 24 increases by >1.4 kcal mol , compared to those for the uncatalyzed reaction. The transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 is shown in Fig. 8.19. [Pg.325]

Fig. 8.19 The calculated transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 [32 ... Fig. 8.19 The calculated transition-state structure for the BH3-exo-selective 1,3-dipolar cycloaddition reaction of nitrone 21 with ethyl vinyl ether 22 [32 ...
The theoretical investigations of Lewis acid-catalyzed 1,3-dipolar cycloaddition reactions are also very limited and only papers dealing with cycloaddition reactions of nitrones with alkenes have been investigated. The Influence of the Lewis acid catalyst on these reactions are very similar to what has been calculated for the carbo- and hetero-Diels-Alder reactions. The FMOs are perturbed by the coordination of the substrate to the Lewis acid giving a more favorable reaction with a lower transition-state energy. Furthermore, a more asynchronous transition-structure for the cycloaddition step, compared to the uncatalyzed reaction, has also been found for this class of reactions. [Pg.326]

Mechanistically the 1,3-dipolar cycloaddition reaction very likely is a concerted one-step process via a cyclic transition state. The transition state is less symmetric and more polar as for a Diels-Alder reaction however the symmetry of the frontier orbitals is similar. In order to describe the bonding of the 1,3-dipolar compound, e.g. diazomethane 4, several Lewis structures can be drawn that are resonance structures ... [Pg.74]

Tandem transesterification and diastereoselective intramolecular 1,3-dipolar cycloaddition of a-methoxycarbonylnitrones with chiral allyl alcohols give polycyclic compounds in one step with high stereoselectivity (Scheme 8.14).76 Transition state Ain Scheme 8.14 is more favorable than B because B has severe steric interaction (allylic 1,3-strain).77... [Pg.253]

Such a conclusion is, nevertheless, connected with the synchronous character of the mechanism. If a stepwise process is involved (nonsimultaneous formation of the two new bonds), as for unsymmetric dienes and/or dienophiles or in hetero Diels-Alder reactions, a specific microwave effect could intervene, because charges are developed in the transition state. This could certainly be so for several cycloadditions [47, 48] and particularly for 1,3-dipolar cycloadditions [49]. Such an assumption has... [Pg.70]

Facial selectivity in 1,3-dipolar cycloadditions to cis-3,4-dimethylcyclobutene (73) (Scheme 1.21) was studied. Only phenylglyoxylo- and pyruvonitrile oxides lacked facial selectivities (anti syn = 1 1). All other nitrile oxides formed preferably anti-74. The anti/syn ratio increased from 60 40 (R = P-O2NC6K4) and 65 35 (R = Ph) to 87 13 and 92 8 for bulky ten-Bu and mesityl substituents, respectively. The transition-state structure of the cycloaddition of formonitrile oxide was determined using both HF/6-31G and B3LYP/6-31G methods. The... [Pg.31]

The 1,3-dipolar cycloaddition of imidazolinone 123 with ethyl m-4,4,4-trifluorocrotonate 124 provided, after 36 h at reflux, the regio- and stereoisomer 125 (90%), accompanied with traces of three other unidentified cycloadducts (10%) <2001JFC275>. Compound 125 was isolated in 70% yield (Scheme 15). The structures of the final product were elucidated by nuclear Overhauser effect (NOE) experiments. This high selectivity is the result of a preferred ///////-orientation of both ester and CF3 groups in the transition state and of an impeded ////////-approach of the CFj-substituted terminus of the alkene to the sterically hindered ct-site of 123. [Pg.60]

The [3 + 2]-cycloaddition reactions of allenes with 1,3-dipoles are useful for the construction of a variety of five-membered heterocycles with a high degree of regio- and stereochemical control [67]. Generally, the dipolar cycloaddition reactions are concerted and synchronous processes with a relatively early transition state. The stereoselectivities and regiochemistries are accounted for by the FMO theory The reaction pathway is favored when maximal HOMO-LUMO overlap is achieved. [Pg.750]

The thermal cycloaddition of azides to acetylenes is the most versatile route to 1,2,3-triazoles, because of the wide range of substituents that can be incorporated into the acetylene and azide components. The accepted mechanism for the reaction is a concerted 1,3-dipolar cycloaddition. The rates of addition of phenyl azide to several acetylenes have been measured the rates of formation of the aromatic triazoles are not appreciably different from the rates of cycloaddition to the corresponding olefins, indicating that the transition-state energy is not lowered significantly by the incipient generation of an aromatic system. [Pg.35]

Mechanistic studies have shown that the transition state for 1,3-dipolar cycloaddition is not very polar. The rate of reaction is not strongly sensitive to solvent polarity. In most... [Pg.359]

No proven 1,3-dipolar cycloaddition reactions of 1,2,4-thiadiazoles have been reported. For proposals related to these transition states see Section 4.08.6.1 and Scheme 13. [Pg.316]

Several computational studies have addressed whether the dipolar cycloaddition of nitronates is a concerted or stepwise process (93,100). Natural population analysis reveals that their is very little zwitterionic character in the transition state. The formation of the C C bond marginally precedes the C—O bond on the basis of calculated bond lengths and orders in the transition structure. These calculations also show that the reaction is a concerted process that is shghtly asynchronous. In addition, the cycloaddition likely proceeds through an early transition state and is overall an exothermic process. [Pg.114]

In the context of stereoselective organic synthesis, diastereofacial-selective cycloadditions of diazoalkanes and diazoacetates with functionalized alkenes has attracted some attention. 3,4-Disubstituted cyclobutenes were studied as dipolar-ophiles by the groups of Gandolfi and co-workers (113) and Martin and co-workers (114). The transition state structures of the cycloaddition of diazomethane with cis-3,4-dimethylcyclobutene was investigated theoretically by DPT methods (113a). [Pg.552]


See other pages where Transition state 1,3-dipolar cycloaddition is mentioned: [Pg.212]    [Pg.86]    [Pg.109]    [Pg.213]    [Pg.323]    [Pg.325]    [Pg.325]    [Pg.460]    [Pg.4]    [Pg.81]    [Pg.24]    [Pg.21]    [Pg.379]    [Pg.52]    [Pg.170]    [Pg.93]    [Pg.73]    [Pg.463]    [Pg.318]    [Pg.359]    [Pg.28]    [Pg.215]    [Pg.1075]    [Pg.34]    [Pg.2]    [Pg.20]    [Pg.24]    [Pg.68]    [Pg.411]    [Pg.542]    [Pg.746]    [Pg.747]    [Pg.784]   
See also in sourсe #XX -- [ Pg.505 ]




SEARCH



Dipolar transition states

Transition dipolar

© 2024 chempedia.info