Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transfer Equilibria at Interfaces

1 Electrochemical Equilibria Occur at a Wide Variety of Interfaces [Pg.447]

Processes in which charge is transferred from one phase to another at an interface make up an important class of interfacial reactions. Well-known examples are the reactions which occur at the electrodes of an electrochemical cell. These are electron transfer reactions, oxidation taking place at one electrode and reduction at the other. The early study of electrochemical cells provided valuable thermodynamic information about the redox processes occurring in them. When an electrochemical cell is a source of energy, for example, a battery, chemical energy is converted to electrical energy. When electrical energy is driven into an electro- [Pg.447]

Another important class of interfacial charge transfer processes occurs at the membrane solution interface. Some solute species can move into the membrane phase, whereas others cannot. When ions are involved in membrane selectivity, a potential drop is established at the interface. Ion transfer processes at membranes are extremely important in living organisms and form the basis for the functioning of the nervous system. Membranes are also involved in ion selective electrodes such as the ubiquitous pH electrode. These electrodes are often used in modern analytical techniques based on potentiometry. [Pg.448]

In the present chapter, the relationship between the electrode potential and the activity of the solution components in the cell is examined in detail. The connection between the Galvani potential difference at the electrode solution interface and the electrode potential on the standard redox scale is discussed. This leads to an examination of the extrathermodynamic assumption which allows one to define an absolute electrode potential. Ion transfer processes at the membrane solution interface are then examined. Diffusion potentials within the membrane and the Donnan potentials at the interface are illustrated for both liquid and solid state membranes. Specific ion electrodes are described, and their various modes of sensing ion activities in an analyte solution discussed. The structure and type of membrane used are considered with respect to its selectivity to a particular ion over other ions. At the end of the chapter, emphasis is placed on the definition of pH and its measurement using the glass electrode. [Pg.448]


See other pages where Transfer Equilibria at Interfaces is mentioned: [Pg.447]    [Pg.449]    [Pg.451]    [Pg.453]    [Pg.455]    [Pg.457]    [Pg.459]    [Pg.461]    [Pg.463]    [Pg.467]    [Pg.469]    [Pg.471]    [Pg.473]    [Pg.475]    [Pg.479]    [Pg.481]    [Pg.483]    [Pg.489]    [Pg.491]    [Pg.493]    [Pg.495]    [Pg.497]    [Pg.499]    [Pg.501]    [Pg.505]   


SEARCH



At equilibrium

Equilibrium interface

Equilibrium transfer

Equilibrium, at interface

© 2024 chempedia.info