Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Titanium trichloride lithium aluminum hydride

ALKENES Allyl dimethyldithiocarbamate. Bis(t -cyclopentadienyl)niobium trihydride. Cyanogen bromide. Di-n-butylcopperlithium. a,o-Dichloromethyl methyl ether. 2,3-Dimethyl-2-butylborane. N,N-Dimethyl dichlorophosphoramide. Diphenyl diselenide. Di-n-propylcopperlithium. Ferric chloride. Grignard reagents. Iodine. Lithium phenylethynolate. Lithium 2,2,6,6-tetramethylpiperidide. Methyl iodide. o-Nitro-phenyl selenocyanate. Propargyl bromide. rra s-l-Propenyllithium. Selenium. Tetrakis(triphenylphosphine)palladium. Titanium(IH) chloride. Titanium trichloride-Lithium aluminum hydride. p-Toluenesulfonylhydrazine. Triphenylphosphine. Vinyl-copper reagents. Vinyllithium. Zinc. [Pg.784]

An 80% yield of tetraphenylfuran is obtained by treatment of benzoyl chloride with active titanium generated by lithium aluminum hydride reduction of titanium trichloride (Scheme 84e) (8UOC2407). The reaction nroceeds via benzil and tetraphenylbut-2-ene-l,4-dione, both of which are minor products of the reaction. [Pg.136]

Solutions of low-valence titanium chloride (titanium dichloride) are prepared in situ by reduction of solutions of titanium trichloride in tetrahydrofuran or 1,2-dimethoxyethane with lithium aluminum hydride [204, 205], with lithium or potassium [206], with magnesium [207, 208] or with a zinc-copper couple [209,210]. Such solutions effect hydrogenolysis of halogens [208], deoxygenation of epoxides [204] and reduction of aldehydes and ketones to alkenes [205,... [Pg.30]

Lithium aluminum hydride reduced )J-azidoethylbenzene to j8-aminoethyl-benzene in 89% yield [600], The azido group was also reduced with aluminum amalgam (yields 71-86%) [149], with titanium trichloride (yields 54-83%) [601], with vanadous chloride (yields 70-95%) [217] Procedure 40, p. 215), with hydrogen sulfide (yield 90%) [247], with sodium hydrosulfite (yield 90%) [259], with hydrogen bromide in acetic acid (yields 84-97%) [232], and with 1,3-propanedithiol (yields 84-100%) [602]. Unsaturated azides were reduced to unsaturated amines with aluminum amalgam [149] and with 1,3-propane-dithiol [602]. [Pg.76]

A mixture of titanium trichloride and 0.33 equivalent of lithium aluminum hydride in dimethoxyethane causes coupling of the benzyl residues benzyl alcohol thus affords bibenzyl in 78% yield [204],... [Pg.79]

An interesting deoxygenation of ketones takes place on treatment with low valence state titanium. Reagents prepared by treatment of titanium trichloride in tetrahydrofuran with lithium aluminum hydride [205], with potassium [206], with magnesium [207], or in dimethoxyethane with lithium [206] or zinc-copper couple [206,209] convert ketones to alkenes formed by coupling of the ketone carbon skeleton at the carbonyl carbon. Diisopropyl ketone thus gave tetraisopropylethylene (yield 37%) [206], and cyclic and aromatic ketones afforded much better yields of symmetrical or mixed coupled products [206,207,209]. The formation of the alkene may be preceded by pinacol coupling. In some cases a pinacol was actually isolated and reduced by low valence state titanium to the alkene [206] (p. 118). [Pg.109]

Lithium aluminum hydride reduced p-benzoquinone to hydroquinone (yield 70%) [576] and anthraquinone to anthrahydroquinone in 95% yield [576]. Tin reduced p-benzoquinone to hydroquinone in 88% yield [174] Procedure 35, p. 214). Stannous chloride converted tetrahydroxy-p-benzoquinone to hexa-hydroxybenzene in 70-77% yield [929], and 1,4-naphthoquinone to 1,4-di-hydroxynaphthalene in 96% yield [180]. Other reagents suitable for reduction of quinones are titanium trichloride [930], chromous chloride [187], hydrogen sulfide [248], sulfur dioxide [250] and others. Yields are usually good to excellent. Some of the reagents reduce the quinones selectively in the presence of other reducible functions. Thus hydrogen sulfide converted 2,7-dinitro-phenanthrene quinone to 9,10-dihydroxy-2,7-dinitrophenanthrene in 90% yield [248]. [Pg.129]

Hydrazones treated with alkalis decompose to nitrogen and hydrocarbons [845, 923] Woljf-Kizhner reduction) (p. 34), and p-toluenesulfonylhydra-zones are reduced to hydrocarbons by lithium aluminum hydride [812], sodium borohydride [785] or sodium cyanoborohydride [813]. Titanium trichloride hy-drogenolyzes the nitrogen-nitrogen bond in phenylhydrazones and forms amines and ketimines which are hydrolyzed to the parent ketones. Thus 2,4-dinitrophenylhydrazone of cycloheptanone afforded cycloheptanone in 90% yield [202]. [Pg.134]

The reagent can also be used for intramolecular reductive coupling (equation I) but for this reaction a reagent obtained by reduction of cyclopentadienyl-titanium trichloride (Alfa) with lithium aluminum hydride is also effective (equation II). A Ti(II) complex of known structure (1) was also shown to be effective for pinacolic coupling. It is more effective than titanocene. ... [Pg.191]

A titanium(Il) species formed from titanium trichloride and lithium aluminum hydride is a useful reagent for the reductive coupling of carbonyl compounds to olefins (McMurry, 1974 McMurry and Fleming, 1974). Both aliphatic and aromatic ketones can be converted to tetrasubstituted olefins in excellent yields. Reductive dimerization of retinal (CCLXXFV) affords j6-carotene (CCLXXV) in 85% yield. The course of the reaction can be accounted for by assuming pinacol formation followed by loss of titanium dioxide. [Pg.174]


See other pages where Titanium trichloride lithium aluminum hydride is mentioned: [Pg.345]    [Pg.345]    [Pg.81]    [Pg.83]    [Pg.340]    [Pg.340]    [Pg.587]    [Pg.631]    [Pg.284]    [Pg.468]    [Pg.1040]    [Pg.21]    [Pg.134]    [Pg.220]    [Pg.587]    [Pg.665]    [Pg.668]    [Pg.1036]    [Pg.580]    [Pg.752]    [Pg.754]    [Pg.807]   


SEARCH



Aluminum titanium

Aluminum trichloride

Titanium hydride

© 2024 chempedia.info